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A B S T R A C T

River discharge plays an indispensable role in maintaining the stability of the hydrosphere system and eco-
environment. Previous methods that utilize satellite imagery to estimate discharge over poorly gauged basins
are generally tailored for large rivers and heavily reliant on ground-based measurements. Consequently, un-
certainties often escalate when these methods are applied to medium-sized rivers. Based on Landsat 5 Thematic
Mapper (TM) and unmanned aerial vehicle (UAV) images, this study proposed a framework for estimating the
discharge of large and medium rivers with limited ground observations. It comprises (1) a modified C/M method,
which considers the spatial heterogeneity of rivers using single-site observation data, and (2) a newly developed
method for estimating river bathymetry with zero discharge measurements (RIBA-zero). Results show that,
utilizing the modified C/M method, rivers wider than three times the satellite resolution (i.e., 90 m) exhibit a
relative root mean square error (rRMSE) of 0.23 in the velocity estimation. Narrower rivers display a slight
increase in the rRMSE (0.41), which is still within an encouraging range. For both types of river widths, the
accuracy of flow velocity estimation is higher during high-flow periods compared with the low-flow counter-
parts. In terms of the flow area estimation, the RIBA-zero method is much more suited for parabola-shaped cross-
sections (rRMSE = 0.22) and flood seasons (rRMSE = 0.35). Additionally, when replacing 30-m Landsat 5 TM
with 10 m-resolution Sentinel-2 imageries, the approaches make a significant improvement in velocity estima-
tion for rivers narrower than 90 m across all periods, exhibiting great potential to estimate discharge in medium
rivers with finer resolution satellite imageries. The framework requires a few ground observations for discharge
estimates with the Nash–Sutcliffe efficiency coefficient (NSE) reaching ~0.9, thereby greatly facilitating
hydrology-related studies with profound implications for sustainable water resources management worldwide.

1. Introduction

River discharge plays an indispensable role in maintaining the sta-
bility of the hydrosphere system and eco-environment. However,
traditional methods for measuring river discharge are often laborious,
time-consuming, and face challenges related to rugged terrain, espe-
cially in poorly gauged areas. This can limit their widespread applica-
tion, impacting environmental disaster response and emergency
monitoring. Therefore, a more efficient approach is needed to derive

accurate river discharge in near real-time (Gleason and Durand, 2020;
Harlan et al., 2021; Ishitsuka et al., 2021; Muhebwa et al., 2024).

Multispectral satellite images with high spectral and spatial resolu-
tions and wide coverage can be used for both large and medium rivers
(Feng et al., 2019; Li et al., 2019; Wu et al., 2024). There are primarily
two approaches to estimating river discharge using remote sensing
techniques. The first one integrates remote sensing with hydrological
models that are driven and/or calibrated by remotely sensed informa-
tion (Huang et al., 2020; Sun et al., 2018). Although hydrological
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models are suitable for estimating long-term continuous river discharge,
there still exist high uncertainties in model inputs and parameter cali-
bration, and parameters are not easily transferable (Mersel et al., 2013;
Huang et al., 2022). The second approach is to establish empirical
regression equations between remote sensing-observed river character-
istic variables (such as width and water level) and discharge. It estimates
river discharge through empirical regression and hydraulic formulas
based on remotely sensed observations. Depending on the number of
hydraulic characteristics involved, this approach can be categorized into
single-variable and multi-variable empirical methods. Single-variable
methods focus on a single hydraulic variable (e.g., water level or
width) to estimate discharge, inclusive of the water level-discharge
rating curve method (estimating discharge based on the empirical
relationship between water level and flow rate) (Papa et al., 2010; Papa
et al., 2012; Kim et al., 2019a), river width (water fraction)-discharge
rating curve method (using river width/ water fraction as a proxy for
flow rate) (Brombacher et al., 2020; Smith and Pavelsky, 2008; Pavel-
sky, 2014; Lin et al., 2024), and the calibration/measurement (C/M)
signal method (calculating river discharge via the ratio of reflectance
values during floods) (Tarpanelli et al., 2013; Filippucci et al., 2022).
Multivariate methods incorporate multiple hydraulic variables (e.g.,
water level, width, and velocity) to more comprehensively capture the
combined effects on river flow. These algorithms rely on empirical re-
lationships derived from multiple factors, thereby providing a more
nuanced and accurate estimate of discharge (Brinkerhoff et al., 2020;
Durand et al., 2016; Durand et al., 2023; Durand et al., 2024; Feng et al.,
2019; Frasson et al., 2023; Hagemann et al., 2017; Huang et al., 2018;
Lin et al., 2023; Zhao et al., 2019a).

In the second approach mentioned above, the C/M signal method is
straightforward and widely applied, relying on the spectral differences
between water bodies and land objects in near-infrared (NIR) images (Lu
et al., 2010; Li et al., 2019). Its basis is that in any given area, the in-
creases in water level would cause a decrease in the NIR reflectance
value. As a result, the ratio (C/M) between the surface reflectance of a
dry pixel, named C (calibration), and that of a wet pixel, named M
(measurement), changes accordingly. That is, due to the variations in
water volume during flood events, the reflectance of the wet measure-
ment pixels (M) typically decreases, while the reflectance of the dry
calibration pixels (C) remains constant. Therefore, during flooding, the
C/M ratio is highly sensitive to the increase in the number of wet pixels,
which in turn reflects changes in river discharge. Moreover, because
discharge and velocity change synchronously, the C/M ratio also cor-
relates closely with flow velocity (Tarpanelli et al., 2013; Tarpanelli
et al., 2015; Tarpanelli et al., 2019; Tarpanelli et al., 2020). Tarpanelli
et al. (2013) have effectively established the relationship between C/M-
V based on hydrological data from several stations on the same river.
Currently, this approach allows for large-scale, high-precision, and low-
cost river discharge estimation. However, the spectral behavior (C/M)
and river morphology at different locations often exhibit significant
spatial heterogeneity that is closely related to river flow velocities. For
example, flow velocity affects the morphology, suspended substance
concentration, and transparency in the river, leading to differences in
the reflectance of optical imagery (Kwon et al., 2023). Additionally,
different river morphologies lead to distinct hydrodynamic character-
istics that in turn influence the distribution of flow velocity. Therefore,
establishing accurate velocity models typically requires calibration data
from multiple hydrological stations. However, hydrological stations are
sparsely distributed, and obtaining confidential hydrological data from
multiple stations poses substantial challenges in many regions across the
world. It is highly necessitated to develop an approach that considers the
spatial heterogeneity of both spectral behavior and river morphology at
a large scale, relying on minimal hydrological stations—ideally one
station—to compute flow velocity for any segment of a river.

In addition, when the river flow velocity has been obtained, the ac-
curate flow area is essential for the river discharge estimation. Satellites
with stereo imagingmodes are eligible for this, as they can acquire large-

scale topography and river geometry. There have been explorations into
estimating river depths based on remote sensing data, utilizing water
surface width and elevation information acquired from satellites such as
SRTM and ICESat-2 (Domeneghetti, 2016; Coppo Frias et al., 2023).
River depth is estimated based on the relationship between water level
and river width, while high-accuracy observations of river cross-sections
are still challenging (Mersel et al., 2013; Schaperow et al., 2019). When
the water-surface width is less than 10 m, a measurement error greater
than 0.5 m in the horizontal or vertical direction will finally result in
exponentially increased errors in the flow area and discharge estimation.
Evidently, it is difficult for satellites, including commercial satellites,
such as QuickBird-2 or Pleiades, with a superior spatial resolution
(better than 1 m ground sampling distance resolution) and higher
revisiting frequency (1–3 days; twice a day for the Pleiades Neo), to
directly monitor underwater conditions (Pan et al., 2016) and generate
the bathymetry of the waterbed.

Instead, low-altitude unmanned aerial vehicles (UAVs) demonstrate
the advantages of high flexibility, convenience, and high resolution.
They can be used to monitor the water surface slope, cross-sectional
profiles above the water surface, and other hydraulic variables, with a
centimeter-level resolution, and data acquisition can be performed at
flexible hours. Therefore, UAVs have become among the major low-
altitude remote-sensing platforms available today (Colomina and
Molina, 2014; Che et al., 2020; Jiang et al., 2022) and have been widely
used in hydrological applications (Kim et al., 2019b; Erena et al., 2019).
Despite this, ground-measured data or mathematical modelling are still
among the most efficient ways to derive underwater bathymetry (Leon
et al., 2006; Bonnema et al., 2016; Legleiter, 2015; Moramarco et al.,
2019). However, in a specific poorly gauged region, where ground data
are limited, it is difficult to obtain detailed ground-measured data
necessary for calculating river discharge, which constitutes a major
barrier to river discharge estimation. Therefore, there is an urgent need
to mathematically model river cross-section without any ground-based
bathymetry measurements.

The objective of this study is to present a new framework for the
estimation of river discharge based on satellite and UAV data with
limited ground-based flow velocity and water level observations. We
propose a method to reconstruct river bathymetry to calculate flow area
(A) without any in situ bathymetry data and a method to calculate flow
velocity (V) that considers the spatial heterogeneity of river spectral
information based on the C/M-V relationship derived from only one
gauging station. We applied the developed approaches across different
reaches along the river and the accuracy of the velocity, bathymetry, and
discharge estimates was validated using the gauged counterparts. These
methods can provide reliable discharge estimates with profound impli-
cations for global river monitoring.

2. Study area

This study selected the largest tributary in the middle reach of the
Yellow River in China, specifically the Wei River (widths range from
100m upstream to 3000m downstream), as the test bed. In addition, the
Wei River has a high sediment yield and concentration, with the sedi-
ment load during the flood season accounting for 75 % to 94 % of the
annual total. The Wei River basin (WRB), located between 103.5 and
110.5◦E and 33.5–37.5◦N, with daily mean temperatures ranging from 6
to 14 ◦C, is situated in a continental monsoon climatic zone. The average
annual precipitation ranges from 450 mm to 700 mm, occurring mostly
during the period from May to October, and the annual mean evapo-
ration is between 1000 and 2000 mm (Zhang and Sun, 2015). The
precipitation distribution in the WRB has been observed to decrease
from the southeast to the northwest, showing large spatial differences
that induce corresponding influences on river discharge. The scarcity of
rainfall during the non-flood season leads to small discharge, whereas
intense flooding during the flood season results in a dramatic increase in
discharge. The Wei River basin is the major region for agriculture,
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industry, and commerce in Northwest China. However, hydrological
stations are scarce for such an important river in China, thereby making
it difficult to implement effective measures to prevent floods or drought
in advance for sustainable water resources management. Therefore, in
this study, we selected six representative river cross-sections in the Wei
River to propose a method for monitoring the discharge with limited
ground-based observations. Among the six sections, Tuoshi (TS) and
Linjiacun (LJC) are in the upper streams, Weijiabu (WJB) and Xianyang
(XY) are in the middle streams whereas Lintong (LT) and Huaxian (HX)
are in the lower streams, as shown in Fig. 1.

3. Data and methods

3.1. Data

3.1.1. Satellite images
Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land

Imager (OLI) images corresponding to the ground-measurement periods
were used (Table 1). The TM sensor has seven bands whereas the OLI
sensor has nine bands. For velocity estimation, band 4 (0.76–0.96 μm) of
TM and band 5 (0.851–0.879 μm) of OLI, both with a spatial resolution
of 30 m, were utilized. Sentinel-2 images with a high spatial resolution
(10 m) and high temporal resolution (5 days) are employed for further
validation in this study. The Sentinel-2 sensor has 13 bands, and band 8
(10 m) is specifically chosen for velocity estimation. All images were
acquired from Google Earth Engine (GEE), a free cloud computing
platform established by Google in 2010, enabling users to perform
geospatial analysis on a global scale using Google’s infrastructure
(Gorelick et al., 2017). The cloud cover percentage of the current image
is calculated based on GEE, and images with cloud cover <10 % are
selected. The median filtering technique (dos Santos et al., 2022) is used

to handle anomalies in NIR values to smooth the data, remove noise and
improve data reliability. We selected 67 Landsat 5 images, 11 Landsat 8
images, and 128 Sentinel-2 images for the stations in the Wei River
basin. Taking the Landsat 5 images for example, among all six stations,
WJB is the only station covered by all 67 Landsat 5 images. Therefore, it
can provide the most sufficient information for the calibration of C/M
and velocity as a reference station. LJC and TS are covered by 33 images,
and XY, LT, and HX are covered by 34 images. On the other hand,
Sentinel-2 images were used for velocity estimation across the stations
for further validation.

3.1.2. UAV data
UAVs are suited for capturing aerial images, generating digital sur-

face models (DSM), and extracting high-precision land andwater surface
elevation information in the Wei River basin, where the flight environ-
ment is favorable with stable river bathymetry. Therefore, the Phantom
3 Standard-DJI drone (Table 2) used in this study flew a total of 5 times
at 5 sites at the end of June 2019. The river discharges at the five sites on
the day of the flight were as follows: TS (30.76 m3/s), LJC (5.53 m3/s),
XY (34.1 m3/s), LT (116.5 m3/s), HX (66.2 m3/s). We assume minimal
changes in the river’s cross-sectional features, i.e., considering the cross-
sectional data above the water surface obtained from the UAV flights in
2019 as equivalent to those from 2007 to 2009 on the same dates. The
flight control software used was Pix4D Capture from Pix4D S.A. (http
s://pix4d.com/). The UAV fly collected 200 to 300 images per river,
with the photograph shooting overlap rate set to 90 % to ensure the
accuracy of the subsequent postprocessing (e.g., stereo image pair, point
cloud, and digital surface model (DSM) datasets) using Pix4dMapper
Software (Version 2.0.104) (https://www.pix4d. com, Zhao et al.,
2022). The generated DSM had a spatial resolution of 2.22 cm when the
flight altitude was set to 50 m, and the elevation precision was verified

Fig. 1. Study area and the representative gauging stations.
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by the total station, which was implemented during the UAV flights.

3.1.3. Ground data
In theWei River, daily river discharge, flow velocity, water level, and

cross-sections of six typical stations were obtained and quality-
controlled by the hydrological bureau of the Yellow River Conser-
vancy Commission. The specific time range for data collection is shown
in Table 3. Among these, the TS station was established in 2004 and the
data collection has been continuous since then. The measurement
criteria of the data for different years were consistent throughout the
entire recorded period. Due to the incomplete continuity of gauged data
in the hydrological bureau of the Yellow River Conservancy Commis-
sion, contemporaneous data for the satellite overpass dates may not be
available. Therefore, we supplemented the missing data based on the
gauged counterparts from the hydrological bureau using the cubic spline
interpolation method (Table 3). Flow velocity at the reference station
was used for calibration of the velocity estimation (referring to Section
3.2.1). In situ water levels were jointly used with mathematical
modelling (referring to Section 3.2.2) to estimate cross-sections when
there were no corresponding UAV measurements. In situ cross-section
and discharge data across the other stations were used for validation
purposes only.

3.2. Methods

A modified C/M method is proposed to overcome the shortcomings
of the spectral information-based method and calculate flow velocity.
Then a novel algorithm for estimating RIver BAthymetry with zero
ground measurements, termed the RIBA-zero method, is put forward to
estimate flow area based on the UAV-monitored above-water cross-
section. By multiplying the flow velocity and the flow area the
discharge in the ungauged river section is finally derived.

3.2.1. Calculation of flow velocity by presenting a modified C/M method
The boundary of the largest water body (a static area with a size of 4

km × 4 km) in all analyzed Landsat /Sentinel-2 images is determined
based on the Modified Normalized Difference Water Index (MNDWI)
(Xu, 2005), and is termed the Maximum River boundary (MRB). The
near-infrared reflectance of all pixels within this area of interest is
extracted. The mean of near-infrared bands within MRB (the averaged
reflectance value of all pixels within the MRB area) is considered as M,
which changes with the flooded area of the river. An increase in river
discharge within the MRB enlarges water proportion or wet area,
thereby resulting in a decrease in MRB-averaged reflectance. Using
MRB-averaged instead of individual wet pixel’s reflectance effectively
reduces the uncertainties and stabilizes the C/M-V relationship. All
hardened urban areas on the images (e.g., road and roof) are extracted,
of which the average value of the near-infrared bands on different im-
ages is counted as C.

Sediment affects water reflectance. Therefore, Filippucci et al.
(2022) developed the application of the sediment correction (i.e., the
CMW approach). Based on previous studies, we attempted to calibrate
the M value of sediment-laden rivers based on changes in water pro-
portion and water pixel reflectance to better eliminate the influence of
sediment (Eq. 1). Subsequently, this study uses Landsat 5/8 images and
in situ velocity data at the single hydrological station (i.e., reference
station) to establish a regional C/M-V relationship in flood and non-
flood seasons, respectively (Eq. 2). We assume that the relationship of
Eq. 2 is universal, that is, the coefficients a and b are the same at both
reference and ungauged stations. To make this assumption feasible, we
propose Eqs. 3 & 4 to correct M at ungauged stations by establishing the
relationship between the M values of the reference and other ungauged
stations to make the coefficients a & b static in Eq. 2 when applied to
other stations. Tarpanelli et al. (2013) showed that stations along the
same river have distinct C/M-V formulas, highlighting the need for each
station to gather a substantial number of gauged V observations before
applying the C/M method. The extensive data demand of the C/M
method makes it challenging to apply to large-scale rivers. To dramat-
ically reduce the data requirement and therefore make the C/M method
applicable to large-scale data-scarce areas, we made improvements
using Eqs. 2–4. In this study, Eq. 2 represents the hypothesis and we
ensure its validity by Eqs. 3 & 4 before applying Eq. 2 across the entire
river. Here, we plotted the data pairs of C/M and V at all stations along a
river before (Fig. 2a) and after (Fig. 2b) correction with Eqs. 3& 4. It was
found that R2 increased from 0.41 (before correction) to 0.67 (after
correction). This justifies the assumption that after correction all sta-
tions along the same river adhere to the same C/M-V relationship.

The MRB represents the maximum boundary where water can reach,

Table 1
Satellite images used in this study.

Satellite Satellite Path Index Satellite Row Index Corresponding hydrological stations Numbers of images

Landsat 5 (2007–2009) 127 36 WJB, XY, LT, HX 34 (17 in flood season, 17 in non-flood season)
128 36 WJB, LJC, TS 33 (11 in flood season, 22 in non-flood season)

Landsat 8 (2019–2020) 127 36 WJB, LT 11 (3 in flood season, 8 in non-flood season)

Sentinel-2 (2019–2020)

– – WJB 56 (18 in flood season, 38 in non-flood season)
– – LT, HX 29 (9 in flood season, 20 in non-flood season)
– – XY 18 (9 in flood season, 9 in non-flood season)
– – LJC, TS 25 (11 in flood season, 14 in non-flood season)

Table 2
DJI Phantom-3-pro’s basic parameters.

UAV product Phantom-3-pro UAV photo

Camera FC300X

Camera sensor
Sony Exmor R

CMOS
Max photo
resolution

4000 × 3000

Max Aperture f/2.8
Focal length 20 mm
Field of view

(FOV) 94◦

Max flight
altitude 500 m

Table 3
Ground-measured data and their corresponding purposes for the six gauging
stations (i.e., TS, LJC, WJB, XY, LT, and HX).

Stations Data

TS

Discharge (2004–2011) (validation)
Velocity (2004–2011) (validation)

Water level (2007–2009) (calibration)
Cross-section (2007–2009) (validation)

LJC
XY
HX

Discharge (2001− 2011) (validation)
Velocity (2001–2011) (validation)

Water level (2007–2009) (calibration)
Cross-section (2007–2009) (validation)

LT

Discharge (2001–2011, 2019–2020) (validation)
Velocity (2001–2011, 2019–2020) (validation)

Water level (2007–2009, 2019–2020) (calibration)
Cross-section (2007–2009) (validation)

WJB (Referenced station) Velocity (2001–2011, 2019–2020) (calibration)
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generally with water in the center and soil on the sides, and the reflec-
tance of soil within the MRB changes less than water. Therefore, the
relationship between the reflectance of MRBs is mostly dominated by
the reflectance of the water within the MRBs due to the change of water
colour (sediment or pollution). Because the central pixel of the MRB is
heavily dominated by water, to establish a reliable relationship between
the reference and ungauged MRB, we selected a single central pixel
(water pixel) from each of them as a proxy for the relationship between
the two. Moreover, after reflectance correction for all MRBs with Eqs. 3
& 4, the same relationship can be applied to all the MRBs in a
hydrologically-connected river within a similar climatological setting.

Therefore, we calibrate c and d based on the values of the central
pixels in the MRB of the reference station and ungauged station first, and
then apply c and d to each pixel in the MRB to calculate the corrected
pixel M value of the ungauged station based on Eq. 4. The reason is that
there exists spatial-spectral heterogeneity in reflectance between unga-
uged and reference stations because water pollution and soil erosion
induced by human activities varies among different reaches and regions
in a basin. The skillful corrections by using Eqs. 3 & 4 ensure that Eq. 2
has uniform coefficients, thereby avoiding the recalibration of co-
efficients a and b for every ungauged station. In the end, we use Eq. 5 for
flow velocity calculation at ungauged river sections (Fig. 3).

M = Mʹ − (M ẃ − Mw)×Ww (1)

where M is the time series of the modified MRB-averaged NIR reflec-
tance value of the river section,M’ is the time series of the original MRB-
averaged NIR reflectance of the river section, M’w is the time series of
the NIR reflectance of the water pixels which are located at the inner
part of the river, with water always present even during low flows, Mw is
the minimum value of the time series of the NIR reflectance of the
selected permanent water pixels of the river section (i.e., a single value),
Ww is the time series of the water body proportion of the river section,
calculated initially by extracting water bodies using the MNDWI index
from remote sensing imagery. Specifically, the MNDWI index within

MRB is calculated based on the green band and shortwave infrared band.
Then the water body threshold is automatically extracted using the
OTSU method (Dong et al., 2021; Otsu, 1979) to identify the water body
portion.

V = a •
C
M

+ b(Universal formula based on the reference station) (2)

where V is the flow velocity of the river section (m/s). Parameters a and
b are calibrated based on the long-term time series of flow velocity and
M value data at the reference station.

Fig. 2. C/M-V relationship diagrams before (a) and after (b) correction for the stations in the Wei River basin. Red lines and colored dash lines stand for trends of the
entire and individual stations that determine the parameters in Eq. (2), respectively. Note that ground velocity measurements have been normalized due to the
confidentiality of the data using Vnor = (V – Vmin)/(Vmax- Vmin), where Vnor is the normalized velocity, V is the original velocity (m/s), Vmin is the minimum velocity
(m/s), and Vmax is the max velocity (m/s). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Flowchart of the modified C/M method.
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whereMref,cen andMu,cen are the M values at central pixels in MRB on the
reference and ungauged river stations. Parameters a and b are calibrated
by using M values at the central pixels within MRB on the reference and
ungauged stations.

where Mu’ is the corrected M value of the ungauged river section,Mu,p is
the M value of a pixel in MRB on the ungauged station, p represents
different pixels in MRB, and N is the number of pixels in MRB.

Vu = a • C/Muʹ+ b (Formula for ungauged stations) (5)

Vu is the flow velocity of the ungauged river section (m/s).

3.2.2. Calculation of flow area using the RIBA-zero method

3.2.2.1. Estimation of the underwater river cross-section. To calculate
flow area accurately a dataset of precise underwater cross-sections is
essential. Despite the reported remote sensing techniques to monitor the
cross-section under the water surface (e.g., through the sonar or green
Light Detection And Ranging (LiDAR)), the drone used in the study
cannot carry water penetration equipment for bathymetric measure-
ment due to limitations in the payload capacity and power supply.
Therefore, another option is to estimate the underwater cross-section by
mathematical methods. Many studies introduce curve-fitting ap-
proaches for predicting unobserved symmetric cross-sections (Mersel
et al., 2013; Schaperow et al., 2019). However, due to the natural cur-
vature of rivers and the asymmetry of cross-sections, simple linear
models or symmetric fittings may result in significant uncertainties in

estimating flow area. Therefore, further mathematical exploration is
needed for flow area estimation. From the viewpoint of mathematics,
the cross-section of a river can be expressed in the form of a power
function, and the power value of the function is usually less than 2
(Dingman, 2007) (Fig. 4).

This section developed a new algorithm (termed the RIBA-zero
method) for modelling underwater cross-sections. Because there are
differences between the shapes of the two sides of a cross-section, the
fitting formulas of the distance and water depth of the left and right sides
of the cross-section are established respectively based on the UAV-
derived DSM (Eq. 6).
{

yl = al(|xl − bl|)tl + cl
yr = ar(|xr − br|)tr + cr

(6)

where y represents the water depth of the river (m); x represents the
distance from the starting point (m), or the value 0.0 in Fig. 4, and the
starting point can also be any value instead of 0.0 if necessary; t repre-
sents the power of the cross-section shape; a represents the opening
degree of the cross-section, i.e., a = ctg (α) in Fig. 4; b represents the
central axis point of the fitting function (b = 0 in Fig. 4) and if necessary
b can be other values than 0; the subscript l and r stand for the left and
right side of the cross-section, respectively; c represents the minimum
water depth (m). c = 0 in Fig. 4, and can be other values than 0 if
necessary.

In Eq. 6 and Fig. 4, the difference in power value represents the shape
of the cross-section of the river. For instance, the curve with t = 1 rep-
resents a triangle-type cross-section, t = 1.75 is the ‘Lane Type B stable
channel’, and t = 2 is a parabola shape cross-section (Dingman, 2007;

Fig. 4. Ideal cross-section or relationship between water depth and distance in Eq. 6 with t ≤ 1 (a) and t ≥ 1 (b).

Mref,cen = c • Mu,cen + d (Correcting the M value at ungauged station to the reference station basis by using the link of central pixel in
MRB between ungauged and reference stations)

(3)

Muʹ =
1
N

∑N

p=1

(
c • Mu,p + d

)
(Corrected M value within MRB at the ungauged station based on all pixels in MRB) (4)
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Bjerklie et al., 2018). So far, the cross-section formula is established.
However, in reality, there will be slope break points in a cross-section
that are not as smooth as in Fig. 4 due to the frequent eroding and
sedimentation, as shown in Fig. 5.

To model the actual cross-section in Fig. 5, the slope (dy/dx) and the
change rate of slope (d2y/dx2) of the above-water cross-section are
calculated and the local maximum of d2y/dx2 is used as the slope mu-
tation point for extracting the segment above water cross-section that is
closest to the water surface. The relationship between the slope of the
cross-section and the starting distance can be formulated as Eq. 7.
{

slopel = al • tl • (xl − bl)tl − 1

sloper = ar • tr • (xr − br)tr − 1 (7)

Depending on whether the power of the fitted relationship is less
than 1, the segmented sections of the cross-section closest to the water

surface are divided into the convex or concave cross-section, and the
underwater cross-section is determined according to three scenarios: (a)
Scenario 1: tl < 1 and tr < 1 (Fig. 6a), i.e., both the left and right sides of
the cross-section are convex. To fit the underwater cross-section with Eq.
6 using segments that are closest to the water surface, we use the points
with xl = bl and xr = br (i.e., slope equal to infinite) as the bottom points
of the river on two sides; (b) Scenario 2: tl > 1, tr < 1, or tl < 1, tr > 1
(Fig. 6b), i.e., only one side of the cross-section is convex. We detect the
bottom point of the cross-section by finding the point with a slope equal
to infinite; (c) Scenario 3: tl > 1 and tr > 1 (Fig. 6c), the intersection of
the formulas fitted by the left and right sides of the above water cross-
section is used as river bottom point, thereby determining the under-
water cross-section. Combined with Eq. 6 and Eq. 7, we can model the
underwater cross-section using above water cross-section (including
water level) produced by the UAV.

Fig. 5. Example of the slope breakpoint on the cross-section. Thick black curve segment: the segmented section above but closest to the water surface, which is taken
as a basis to fit underwater cross-section. To avoid overfitting, as long as possible the thick black curve segment should be selected.

Fig. 6. Example of three scenarios when determining the below water cross-section. (a) Scenario 1 & (b) Scenario 2: no intersection is found in fitting the formula of
two sides of the cross-section; (c) Scenario 3 intersection is found in fitting the formula of two sides of the cross-section.
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3.2.2.2. Calculating flow area. After modelling the underwater cross-
section with the RIBA-zero method (Eq. 6 and Eq. 7), we can then
calculate the flow area (or underwater cross-section area) as shown in
purple in Fig. 6. In Fig. 6a&b. The area for the purple polygon is
calculated with Eq. 8. In Fig. 6c. The area for the purple polygon is
calculated with Eq. 9.

Where A represents the flow area (m2), Aall represents the whole area
of the red rectangle (m2), Aleft and Aright represent the grey area under
the curves (m2), xl and xr represent the distance of the left and right sides
of the cross-section crossed by the water surface (m). In addition, xl0 and

xr0 represent the lowest underwater points on the left and right sides
(m); x0 represents the underwater intersection point (m), and yl repre-
sents the height difference from the water surface line to the underwater
intersection point (m) (referring to Eq. 6 for the explanation of param-
eters a, b, c and t). xl and xr can be directly obtained based on UAV
images. In cases where UAVmeasurements are missing, we calculate the
average water-level difference between the ungauged station with UAV

flights coupled with mathematical modelling and the reference station
with ground water-level measurements at the corresponding date. Then,
we can easily estimate the water level for ungauged stations based on the
water level data from the reference station hereby to determine xl and xr
based on the cross-sections fitted by the UAV. Unavoidably this may

Fig. 7. Extracted boundary for C value calculation from Landsat 5 TM. Sub-figures a & c: image No. 128; b & d: image No. 127. Images a & b are true colour images,
and c & d are near-infrared images. Red circles stand for urban areas selected with high reflectivity in the near-infrared band. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

⎧
⎨

⎩

A = Aall −
(
Aleft + Aright

)
= |xr − xl| • yl −

[(∫ xlo

xl

(
al(x − bl)tl + cl

)
+

∫ xr

xr0

(
ar(x − br)tr + cr

)
)

yl =
⃒
⃒
(
al(xl − bl)tl + cl

)
−
(
al(xlo − bl)tl + cl

) ⃒
⃒

(8)

⎧
⎨

⎩

A = Aall −
(
Aleft + Aright

)
= |xr − xl| • yl −

[(∫ xo

xl

(
al(x − bl)tl + cl

)
+

∫ xr

x0

(
ar(x − br)tr + cr

)
)

yl =
⃒
⃒
(
al(xl − bl)tl + cl

)
−
(
al(xo − bl)tl + cl

) ⃒
⃒

(9)
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introduce uncertainty, which can be effectively reduced by increasing
the number of UAV flights.

With the flow velocity and flow area determined above, we can
calculate the river discharge with Eq. 10.

Q = A • V (10)

where Q represents the river discharge (m3/s), A represents the flow

area (m2), and V represents the flow velocity (m/s).

4. Results

4.1. Estimating flow velocity using Landsat 5 images

Before determining the C/M-V relationship, the corresponding areas
of land and water were extracted to calculate C and M using methods
specified in Section 3.2.1. For the calculation of C, a large number of
urban pixels on the image were extracted from two Landsat 5 TM images
(satellite path No. 127 and No. 128, Table 1). Because the cities in the
study area developed alongside rivers, except for most of the urban
pixels near rivers we also used some urban pixels far from the river.
Fig. 7 shows that the reflectance of the urban area in the near-infrared
band is high.

For the calculation of the M value, this study visually extracts the
boundary of the water body area, or MRB recorded in the image during
2001–2011 based on Landsat 5 true-colour images. Then the average
reflectance of the pixel within the MRB was used as the M value. The
maximumM value is 0.34 and the minimum one is 0.12. The MRB-based
M values change significantly over time as water and land have different
spectral characteristics in the NIR band over time. When the water level
rises, the number of water pixels (land pixels) increases (decreases), and
vice versa. Taking partial images of LT as an example (Fig. 8), during
non-flood periods or low-flow periods, the river is clear, with a low
reflectance (dark blue in Fig. 8c, d). During the flood period, especially
during the peak flow, the river carries a large amount of sediment,
thereby resulting in reflectance values that are close to those of the
adjacent shore (Fig. 8a, b).

Therefore, we introduced Eq. 1 to correct the original M value
(0.11–0.27), and the modified M value ranges from 0.09 to 0.24. After
obtaining the values of C and modified M at each station, we established
the relationship between the flood season and non-flood season by the
least squares regression method based on 67 pairs of C/M and V of the

Fig. 8. The difference in reflectance when the river carries sediment (a, b) and when it is clear (c, d). The red line is the maximum river boundary (MRB) of the LT (a
downward hydrological station in Figs. 1 & 7) based on TM images. The yellow square represents the selected permanent water pixels. Blue and green colors show the
value of the Landsat surface reflectance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. The relationship between the C/M and velocity in different seasons for
WJB. The R2 value is used to evaluate the correlation between the flow velocity
and the C/M. The red and blue areas represent the 95 % confidence interval
that is calculated using the least squares method. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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reference station (WJB), as shown in Fig. 9.
According to Fig. 9, the relationships between the C/M and V of the

reference station (WJB) in flood and non-flood seasons are different.
During the flood season, the slope of the C/M-V curve is 0.66 with an R2

of 0.84 whereas during the non-flood season, the slope of the C/M-V
curve is 0.57 with an R2 of 0.65. According to the fitting formula, for all
periods, the average relative error of the estimated flow velocity for the
reference station (WJB) is 20.10%, which indicates a high accuracy. The
average relative error in flood season and non-flood season is 20.85 %
and 19.56 %, respectively.

The fitting relationship between M values at the reference station
and ungauged river section is established according to Eq. 3 in the flood
and non-flood seasons, as shown in Table 4. In flood seasons, the highest
R2 fitted by the TS station is 0.92, and the lowest R2 fitted by the LJC is
0.60; in the non-flood season, the highest R2 fitted by the TS station is
0.75, and the lowest R2 fitted by the HX is 0.56. The reliability of the M
value relationship among the five sites varies primarily due to the
following reasons: variations in the water colour and turbidity among

different sites and vegetation growth when surfaces are exposed during
the low-water period.

After obtaining the fitting relationship between the M value of each
ungauged station and the reference station, we can calculate flow ve-
locity with Eq. 4 for each ungauged river section. We used satellite
images to extract the M value of the corresponding station at different
times, calculate flow velocity for the ungauged stations and perform
error analysis with the gauged velocity, as shown in Fig. 10.

The accuracy of flow velocity estimation differs among stations with
different river widths. The five stations have been divided into two
categories based on the multi-year average river widths derived from the
hydrological bureau of the Yellow River Conservancy Commission. One
category is for sites with river widths greater than 90 m (which is more
than three times the image resolution), including the LT and HX stations.
The other category is for sites with river widths less than 90 m (which is
less than three times the image resolution), including the XY, LJC, and
TS stations (Fig. 10). The average relative error of the estimated velocity
for stations with river widths greater than 90 m (LT and HX) in the entire
period is 21.35 %, and the rRMSE is 0.23, indicating the relationship is
reliable for large rivers. However, for stations with river widths less than
90 m, the average relative error increased by 17.05 %, and the rRMSE
increased by 0.18, indicating slightly worse estimation performance. In
flood season, the average relative error for river width greater than 90
m/ less than 90 m is 16.54 %/32.04 %, and the rRMSE is 0.18/0.33,
respectively. In non-flood season, the average relative error of stations
with river width greater than 90 m/ less than 90 m is 26.31 %/42.27 %,
and the rRMSE is 0.30/0.48 (Table 5). It can be concluded from the
above results that our modified C/M method provides better estimation

Table 4
Fitting of M value relationship between ungauged river sections and the reference station (WJB).

Sections Average river width (m) Flood season expressions R2 F-Sig Non-flood season expressions R2 F-Sig

LT 158.31 MWJB = 1.31MLT-0.0582 0.91 1.35E-7 MWJB = 0.89MLT + 0.0043 0.63 6.09E-3
HX 150.27 MWJB = 1.40MHX-0.1087 0.87 1.09E-6 MWJB = 0.51MHX + 0.0558 0.56 7.65E-3
XY 63.92 MWJB = 1.106MXY-0.0457 0.88 5.72E-6 MWJB = 0.96MXY + 0.0054 0.65 4.65 E-3
LJC 30.45 MWJB = 0.74MLJC + 0.028 0.60 5.15E-3 MWJB = 0.90MLJC-0.0148 0.70 1.21E-6
TS 46.08 MWJB = 0.90MTS-0.0169 0.92 1.18E-5 MWJB = 0.77MTS + 0.0183 0.75 1.96E-6

Fig. 10. The scatterplot between the estimated velocity and ground-measured counterpart. The grey dashed line represents the linear fit line between the ground-
measured velocities (VG) and the estimated velocities (VE) at TS, LJC, and XY stations, where the average width of the river is less than 90 m. The blue dashed line
represents the linear fit line between the VG and VE at LT and HX stations, where the average width of the river is larger than 90 m, and the black lines represent the
1:1 line. (a) flood season, (b) non-flood season. RW means the average river width. Note that the velocity has been normalized. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
The relative root-mean-square error (rRMSE) of the estimated flow velocity of all
stations in the middle Yellow River.

Period River width > 90 m River width < 90 m

LT HX XY LJC TS

Flood season 0.19 0.17 0.23 0.36 0.40
Non-flood season 0.27 0.33 0.41 0.58 0.46
All periods 0.23 0.24 0.32 0.47 0.44
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in flood season as opposed to non-flood season. Moreover, our method
performs better on rivers wider than 90 m and exhibits an acceptable
estimation accuracy for rivers narrower than 90 m.

Among all stations, the result of LT and HX (river widths >90 m)
performed best both in flood and non-flood seasons, with rRMSE values
of 0.19/0.17 and 0.27/0.33, respectively, whereas LJC and TS (RW<90
m) performed worst with rRMSE values of 0.36/0.40 in the flood season

and 0.58/0.46 in the non-flood season. For station XY, although the
average width of the river is less than 90 m, it expands to over 90 m
during the flood season, thereby showing better performance during this
period. It can be concluded that when using the method in this study to
estimate flow velocity based on Landsat 5 TM (with a resolution of 30
m), the wider the river is, the higher the accuracy of flow velocity
estimation.

Fig. 11. Typical underwater cross-section estimations in 2007, 2008, and 2009 over LT(a-c), HX(d-f), XY (g-i), LJC (j-l), and TS (m-o).

M. Li et al. Remote Sensing of Environment 318 (2025) 114610 

11 



4.2. Estimating underwater cross-section area

After validating the formulas for flow velocity calculation, we then
evaluated the flow area estimation model based on ground-measured
cross-section data (2007–2009) from the hydrological bureau of the
Yellow River Conservancy Commission, which was conducted in the
middle Yellow River, as shown in Fig. 11. The measured flow area was

used as a benchmark to analyze the accuracy of the modelled flow area
at each station.

According to Fig. 11, the relative error of the estimated flow area of
all stations in the middle Yellow River regardless of the season is 36.02
%, the rRMSE is 0.37, and the relationship between the ground-
measured and the estimated flow area was tested by using the F-test
method with a significance of 3.08E-33 (less than 0.01). In the flood

Fig. 12. Validation of the discharge estimates against the ground-measured discharge. (a) flood season, (b) non-flood season, the grey dashed line represents the
linear fit line of ground-measured discharge (DG) and estimated discharge (DE) at TS, LJC, and XY stations where the average width of the river is less than 90 m. The
blue dashed line represents the linear fit line between the DG and DE at LT and HX stations, where the average width of the river is larger than 90 m and the black
lines represent the 1:1 line, (c-g) discharge hydrograph of LT (c), HX (d), XY (e), LJC (f), and TS (g). Sparse discharge estimates are due to cloud contamination during
high flow periods, coupled with the long revisiting time of the satellite. Only part of the discharge estimates were shown with concurrent in situ data during
2007–2009. Note that ground discharge measurements have been normalized using Qnor = (Q – Qmin)/(Qmax- Qmin), where Qnor is the normalized discharge, Q is the
original discharge (m3/s), Qmin is the minimum discharge (m3/s), and Qmax is the max discharge (m3/s). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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season, the relative error of the estimated flow area of all stations in the
middle Yellow River is 32.46 %, the rRMSE is 0.35, and the relationship
between the ground-measured and simulated cross-section is validated
by the F-test with a significance of 6.02E-11 (less than 0.01). In the non-
flood season, the relative error is 37.54 %, the rRMSE is 0.36, and the
relationship between the ground-measured and estimated flow area is
validated by the F-test with a significance of 8.58E-24 (less than 0.01).
The accuracy of estimating the flow area in the flood season is higher
than that in the non-flood season. Among all the five stations, the esti-
mated flow area error of XY (2009), where the shape of the cross-section
(the underwater section) is most similar to a parabola, is the lowest, and
the rRMSE is 0.22. In TS, where the shape of the cross-section is narrow
and the riverbed is flat, the rRMSE is 0.56, which is the largest among
the five stations. In other words, errors are positively correlated with the
degree of bias (from an ideal parabola curve) of the actual underwater
section of the cross-section. Based on the above analysis, it can be
concluded that the RIBA-zero method is more suited for parabola-
shaped cross-sections.

4.3. Estimating river discharge using single satellite sources

After deriving the flow area and flow velocity, we then used Eq. 10 to
calculate the river discharge at each station. Results are shown in Fig. 12
and Table 6. The average relative error of the estimated discharge for
stations with river widths greater than 90 m in the entire period is ~30
%, the Nash–Sutcliffe efficiency coefficient (NSE) is ~0.9, and the
rRMSE is ~0.3, indicating that the relationship is reliable. For stations
with river widths less than 90 m, the average relative error increased by
30 %, the NSE decreased by 0.1, and the rRMSE increased by 0.2,
indicating slightly worse estimation performance. Among them, the high
average relative error is due to the LJC station’s average river width

being only 30.45 m. At certain times during the non-flood season, the
river width even falls below 30 m, leading to a significant bias in the
estimation of low flows. When excluding the LJC station, that is, when
only considering rivers with widths ranging from 40 to 90 m, NSE/
rRMSE is 0.79/0.43. It can be concluded that the developed approaches
are more suited for rivers wider than 90 m, but also perform well in
rivers ranging from 40 to 100 m. In the flood season, the range of NSE is
0.91–0.96 and the range of rRMSE is 0.20–0.34 whereas in the non-flood
season, the range of NSE and rRMSE is 0.42–0.69 and 0.31–0.44,
respectively. It can be concluded that the discharge estimates are more
accurate in the flood season than in the non-flood season.

Among all the stations, the flow estimation accuracy is better at the
HX and LT stations, followed by XY, whereas LJC and TS have the lowest
accuracy. This is possibly due to constraints imposed by the spatial
resolution of the images in velocity estimation for narrow rivers and
uncertainties caused by the irregular-shaped cross-sections. For
example, the velocity estimation accuracy at the TS station is better than
at the LJC station, but due to the irregular shape of the TS section, the
errors in cross-section estimation are larger, thereby resulting in the
greatest error in discharge estimation (Fig. 12). Additionally, the accu-
racy of LJC flow velocity estimation is low, but its flow estimation ac-
curacy is high. This is because the overall velocity at the LJC station is
overestimated whereas the flow area is underestimated. The joint error
in discharge estimation combining velocity and flow area has been
offset. Therefore, the performance of the estimates is still reliable.

4.4. Densifying discharge estimates using Landsat and Sentinel-2 images

To complement the discharge estimation in Section 4.3 using a single
satellite mission (i.e., Landsat 5), next we supplemented a scenario
incorporating Landsat 8 with Sentinel-2 to densify the discharge esti-
mates at the LT station during 2019–2020. To explore the added value of
an additional satellite platform in discharge estimation, we plotted the

Table 6
Performance of discharge estimates at five sites in the Wei River basin (note that
results of flood and non-flood seasons were aggregated due to limited data
points).

River widths Site No. of samples rRMSE (− ) NSE (− )

>90 m
LT 16 0.31 0.87
HX 15 0.26 0.95

<90 m
XY 16 0.37 0.90
LJC 11 0.41 0.95
TS 11 0.49 0.67

Fig. 13. The joint use of Landsat 8 and Sentinel-2 in discharge estimation at the LT station during 2019–2020. Note that the discharge has been normalized due to the
confidentiality of the in situ data.

Table 7
Performance of discharge estimates using Landsat 8 and Sentinel-2 at LT in the
Wei River basin during 2019–2020 (note that results of flood and non-flood
seasons were aggregated due to limited data points).

Mission No. of samples rRMSE (− ) NSE (− )

Landsat 8 11 0.31 0.87
Sentinel-2 29 0.55 0.86

Landsat 8 + Sentinel-2 40 0.53 0.87
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estimated discharge against the gauged counterpart with a table
showing the corresponding statistics for Landsat 8 and Sentinel-2,
respectively.

Overall, it was found that with a temporal resolution of 5 days, the
number of Sentinel-2 images was almost three times that of the Landsat
8 (29 vs 11), thereby provingmore discharge estimates in the concurrent
dates than its Landsat counterpart. The joint use of the two missions
further contributed to the increasing number of discharge estimates,
particularly in the non-flood season. The NSE was 0.87 for Landsat, 0.86
for Sentinel-2 and 0.87 for their combination (Fig. 13 and Table 7).

However, given the limited useable images in the flood season due to
the prevalent cloud contamination, it is not surprising to find that the
joint use of Landsat and Sentinel-2 still missed many of the peaks during
floods. This analysis confirms the added value of Sentinel-2 in discharge
estimates but also necessitates the synergy of multisource remote
sensing platforms in discharge estimation for further application (e.g.,
flood forecasting).

5. Discussion

5.1. Comparison of flow velocity estimation approaches

The original C/M method requires multiple hydrological station data
to determine a regional relationship between C/M and V. Based on
Landsat 5 TM data, this study proposes a modified C/M method that
requires only in situ velocity and water level data from one station to
enable the application to other images, thereby relieving the constraints
on the spatial scale. Due to the differences in river morphology caused
by human activities and other factors (Yu et al., 2016; Hoitink et al.,
2017), the location of the M pixel determined based on the one-pixel
method is difficult to extend to different locations of rivers in the
study area (Tarpanelli et al., 2013; Tarpanelli et al., 2015). To overcome
this, our method used the mean value of the MRB as opposed to one
pixel, which is quite suited for estimating the future discharge of the
reference station. The R2 of C/M-V was 0.84 in flood seasons and 0.65 in
non-flood seasons, respectively, when Landsat 5 TM images were used in
this study, which is consistent with the finding reported by Tarpanelli
et al. (2015). This justified the reliability of flow velocity estimation in
this study when C/Mmethods were used. To improve the applicability of
the study, we also attempted to change the reference stations to LT and
HX (after the change, TS and LJC did not have concurrent images.
Therefore, only XY, LT, HX, andWJB stations were discussed). We found
that the range of rRMSE variation for flow velocity at XY, LT, HX, and
WJB stations over the entire period ranged from 0.18 to 0.42 (not
shown), demonstrating the stability of our method.

Because of different conditions, such as image lighting conditions,

the relationship between C/M and V based on a single station is difficult
to apply to different stations in the study area. In our modified method,
the relationship is beyond the spatial limitations, thereby enabling the
application across diverse stations. To explore the performance of the
modified relationship, the accuracy of the original C/M method (not
considering the impact of sediments) and the modified counterpart for
estimating the flow velocity for ungauged sites was analyzed (Table 8).

According to Table 8, in the case of the original method, the average
relative error (RE) of all stations is 48.07 %, and in the station with the
worst estimation (TS), the RE reaches 58.53 %. In contrast, for the
modified method, the accuracy of the flow velocity estimation is
significantly improved with the average RE of all stations reaching
31.68 %—decreased by more than 16 % at all stations and by more than
30 % at HX. Therefore, the modified method shows better performance
for velocity estimation at ungauged river sections.

Our method can be well applied in Landsat 5 TM images for esti-
mating flow velocity. To verify the reliability of the correlation between
C/M and V, we took WJB as the reference station and used Landsat 5
images to estimate velocity in flood and non-flood seasons, respectively.
Among the 28 sets of data in the flood season, 23 sets were selected to fit
the relationship between C/M and V, showing that the average R2 was
0.84. In the non-flood season, 30/39 sets of data were selected to fit the
C/M-V relationship showing that the average R2 was 0.65. This proved
that the use of Landsat 5 images can also detect the C/M-V relationship,
which is in accordance with the study of Li et al. (2019) that confirmed
the superiority of the mean value of multiple pixels over a single pixel in
generating stable discharge estimates.

Furthermore, results show that the wider the river is, the higher the
accuracy of flow velocity estimation due to the impact of image reso-
lution. To investigate the impact of spatial resolution on the results,
Sentinel-2 images were also employed in this study. The flow velocity of
each station was calculated using the same method (Table 9).

Compared with Landsat 5 TM, estimating the flow velocity using
Sentinel-2 images decreases the average relative error by 9.53 %, and
lowers the rRMSE by 0.08 on average (Table 9). When switching to
Sentinel-2 data sources, even the XY, LJC, and TS cross-sections within
river widths ranging from 30 to 90 m show good performance, with the
overall rRMSE ranging from 0.27 to 0.32 across all periods. It can be
concluded that our modified C/M method provides better flow velocity
estimation when using Sentinel-2 data with a resolution of 10 m
compared to 30 m Landsat 5 TM images. Moreover, the developed
approach performs better on rivers wider than three times the satellite
resolution. Previous studies have found that river width extraction is
more accurate at more than 3 times the satellite resolution (Allen and
Pavelsky, 2018), which supports our findings. Tarpanelli et al. (2019)
also believed that Sentinel-2 have the potential to estimate the velocity
and discharge using the C/M method for narrow rivers (width< 100 m).

5.2. Uncertainties in cross-section estimation

In Section 4.2, we postulated that the RIBA-zero method is much
more suited for the parabola-shaped cross-sections while having diffi-
culties in precisely determining the flow area of the trapezoidal cross-
section. To further confirm our hypothesis, a parameter for describing
the shape of the cross-section was designed to determine what factor
would influence the performance of our method. In RIBA-zero, the slope
of the above-water cross-section is the key information to estimate the
underwater cross-section. Cross-sections that are approximately para-
bolic in shape can be represented by a parabola (Zhao et al., 2017). After
segmenting the cross-section with the slope breakpoint, the segment of
the cross-section closest to the water surface was chosen to estimate the
underwater cross-section. Its real slope (Sr) and the simulated slope in a
parabola fitted by the above-water cross-section (Sf) are compared. We
define |Sr - Sf|/Sf as the parameter describing the degree of the bias of the
real cross-section to a parabola-shaped cross-section and explore how
this degree influences the estimation of the underwater cross-section by

Table 8
Comparison of average relative errors of the modified C/M and original C/M in
calculating the flow velocity.

Method XY LT HX LJC TS Mean

Modified C/
M

28.48
%

19.89
%

23.12
%

48.67
%

38.23
%

31.68
%

Original C/M 41.05
%

35.78
%

55.95
%

49.05
%

58.53
%

48.07
%

Table 9
rRMSE (relative root-mean-square error) of the flow velocity of all stations in the
middle Yellow River calculated based on Sentinel-2.

Period River width > 90 m River width < 90 m

LT HX XY LJC TS

Flood season 0.18 0.18 0.23 0.29 0.29
Non-flood season 0.19 0.17 0.34 0.34 0.35
All periods 0.19 0.18 0.27 0.32 0.32

M. Li et al. Remote Sensing of Environment 318 (2025) 114610 

14 



calculating the elevation bias (RMSE) of the estimated underwater cross-
section and in situ underwater cross-section at nine different water
levels (not shown).

We found that with the increase in the degree of bias (from the
parabola curve) of the segment of the cross-section closest to the water
surface, the RMSE of the underwater elevation increases (R2 = 0.72,
RMSE = 0.20 m), thereby further confirming that our proposed method
is much more suited for the parabola-shaped cross-sections in deter-
mining the underwater cross-section. This finding is consistent with
Bjerklie et al. (2018), who assumed a parabolic cross-section based on
the analysis of the in situ database to infer bed elevation from height-
width measurements. This explains why our method performs better
in flood seasons than in non-flood seasons. In this study, the average
degree of bias during the non-flood season is 0.31 higher than during the
flood season.

The trapezoidal cross-section is difficult to estimate using only the
above-water cross-section without information on the river bottom point
(Schaperow et al., 2019). As discussed in Tarpanelli et al. (2015), the
ground elevation of the river bottom in entropy can improve the accu-
racy of constructing river cross-sections. Garambois and Monnier (2015)
proposed a method combining remotely sensed surface elevation and
slope, plus one in situ depth measurement to estimate river discharge in
the Garonne River (France), and noted that one in situ depth measure-
ment improved the performance of their method. We also tested our
method in determining trapezoidal cross-sections with riverbed eleva-
tion at nine different water levels, and the result is consistent with the
studies of Garambois and Monnier (2015) and Tarpanelli et al. (2015).
After adding underwater elevations to determine the underwater cross-
section area, the rRMSE of the nine estimates is 0.30, which is 6.30 % of
the results (both flow area and discharge) derived without using un-
derwater elevations.

5.3. Analysis of the river discharge errors and uncertainties

In this study, we established a relationship between velocity and C/
M for flow velocity estimation, then combined it with the RIBA-zero
method that estimates the cross-section to derive river discharge. We
also attempted to establish a direct relationship between C/M and river
discharge at the reference station, with R2 reaching 0.72 in the flood
season and 0.18 in the non-flood season, which is significantly lower
than the relationship established between C/M and V (R2 is 0.83 in the
flood season and is 0.64 in the non-flood season). This finding is
consistent with Tarpanelli et al. (2013) who showed that the correlation
between the C/M and the velocity is higher than that between the C/M
and discharge at the Italy Piacenza and Cremona gauging stations.
Therefore, using V to build relationships is more reliable. Moreover, as
discussed by Yu et al. (2016) and Yang et al. (2024), the spectral
reflectance increases with the suspended sediment content in the river.
In sediment-laden rivers, high concentrations of suspended sediment
typically occur during the flood season, especially during high-flow
periods. This interferes with the original C/M-V and C/M-Q relation-
ship. To demonstrate this point, we also compared the relationship be-
tween C/M and river velocity before and after eliminating the influence
of sediment at reference stations based on Eqs. 1–5. The fitting results
after eliminating the influence of sediment were significantly better than
those without considering sediment effects (R2 is 0.10 in the flood sea-
son and 0.30 in the non-flood season). This indicates the reliability of
our modified method in sediment-laden rivers. Filippucci et al. (2022)
also developed the CMW approach using the pixel within the water body
to eliminate the influence of sediment in Italy and found that the per-
formance of the CMW method improved significantly compared to the
C/M method, demonstrating the importance of considering sediment in
the estimation of river discharge.

Apart from estimating river discharge through spectral information,
there are also many remote sensing-based discharge estimation methods
based on river width and water level that can be readily observed by

satellites (Zhao et al., 2019b; Huang et al., 2018). These methods are
difficult to apply to rivers narrower than the satellite resolution because
the uncertainty of discharge estimation for small rivers (widths less than
100 m) may increase correspondingly. Gleason and Smith (2014) pro-
posed the at-many-stations hydraulic geometry (AMHG) method for
river discharge estimation in ungauged rivers based on Landsat 5 TM
images and tested their method over multiple rivers in the United States,
Canada, and China. The rRMSE was within 0.20–0.30. However, as
stated by Brinkerhoff et al. (2020) and Feng et al. (2019), if the river
width is less than the resolution of the satellite, the AMHG method will
fail. Similarly, the method proposed in this study is also constrained by
resolution, making it difficult to estimate rivers narrower than a single
pixel. It is a pertinent topic for further investigation of how to decom-
pose individual water-land mixed pixels smaller than the satellite reso-
lution. However, the method proposed in this study demonstrates
promising potential for estimating the discharge of medium-sized rivers
(40–100 m), with an average rRMSE of 0.42 and NSE of 0.84 (Table 6).
Because the C/M method depends on the reflectance of a river, its lim-
itation due to image resolution is relatively smaller compared to
methods relying on river width calculation. Li et al. (2019) exploited
spectral information by the C/M ratio in estimating the discharge of
rivers with widths less than 100 m in China, and the NSE value of their
result is 0.45, thereby indicating the potential of using the C/M-based
method to monitor the discharge of medium-sized rivers. In addition,
when floods exceed the bank range, the uncertainty of discharge esti-
mates may increase dramatically for many methods whereas the modi-
fied C/M method, based on the reflectance of water and soil, can still
perform well. To keep the results more precise, the method is suggested
to be used at rivers with similar climatic settings and flow regimes and it
will benefit from the use of very high-resolution satellite images (e.g.,
PlanetScope (Flores et al., 2024; Harlan et al., 2023)).

6. Conclusions

The present study proposed a framework by combining satellites and
UAVs to estimate the river discharge for medium-sized rivers. First, a
modified C/M method for velocity estimation was proposed, and then a
new method to estimate river bathymetry (i.e., the RIBA-zero method)
was presented. Both methods were validated by ground observations
with the following results.

(1) The modified C/M method, using MRB to calculate M values and
considering the spatial heterogeneity of river spectral informa-
tion, can establish a regional relationship between C/M and flow
velocity based on only one hydrological station. The estimated
velocity rRMSE (relative error) of stations with river width
greater than 90 m in the Wei River is 0.23 (21.35 %) in the entire
year. However, for stations with river widths less than 90 m, the
rRMSE increased by 0.18, and the average relative error
increased by 17.05 %. This method performs better on rivers
wider than 90 m and exhibits higher accuracy during the flood
season. An attempt to establish a direct relationship between C/M
and river discharge shows that the R2 is 0.72 in flood seasons and
0.18 in non-flood seasons, which is significantly lower than the
relationship established between C/M and V (R2 is 0.84 and 0.65
in different seasons). This suggests the relationship of C/M-V as
opposed to C/M-Q is recommended when the modified C/M
method is applied in practice. In addition, this method can pro-
vide better flow velocity estimation when replacing 30 m Landsat
5 TM with 10 m-resolution Sentinel-2 imageries, yielding an
overall rRMSE ranging from 0.27 to 0.32 for rivers less than 90 m
across all periods.

(2) The RIBA-zero method for determining the bathymetry is more
suited for the parabola-shaped cross-sections (rRMSE is 0.22 and
the relative error is 12.81 %). The degree of bias (from the
parabola curve) of the segment of the cross-section that is the
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closest to the water surface is the key factor influencing the
performance of RIBA-zero in estimating the underwater cross-
section. This is the reason for the better performance of RIBA-
zero in the flood season than in its non-flood counterpart. In
the non-flood season, the average degree of bias (from the
parabola curve) is 0.31 higher than that of the flood season. After
adding the elevation of the river bottom to determine the un-
derwater cross-section area, the rRMSE is 0.30, which is 6.30 % of
the counterpart derived without using the elevation of the river
bottom.

(3) The modified C/M plus RIBA-zero method demonstrates higher
accuracy for rivers wider than three times the satellite resolution,
with an estimated discharge rRMSE of 0.29 and an NSE of 0.91
over the entire period. When applying our method to rivers
smaller than three times the resolution, the performance metrics
are also acceptable. Particularly, for medium-sized rivers
(40–100m), there is an encouraging potential for estimating river
discharge with an average rRMSE of 0.42 and an NSE of 0.84.
Since the C/M method takes the reflectance as its basis, it suffers
from fewer constraints imposed by the image resolution
compared to methods based on river widths.

Overall, it is feasible to apply the developed method to estimate river
discharge with limited in-situ data (at least from one station). However,
the method is currently not applicable to totally ungauged basins
without any measured flow velocity. Future research is highly necessi-
tated to explore the possibility of extending this method to similar basins
with the joint efforts of multisource remote sensing observations.
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