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A B S T R A C T

Accurately measuring river width has been one of greatest challenges due to the presence of mixed land–water 
pixels intersecting river boundaries. Therefore, this study proposed a novel mechanical method (RW-vebasud), 
instead of traditionally empirical models, to estimate river width within a pixel in vegetation areas based on time 
series analysis of Sentinel-1 and Sentinel-2 spaceborne multispectral images. We initially explored the mecha-
nism of variation in backscatter intensity (σ) with enhanced vegetation index (EVI) whereby we successfully 
removed noises in σ–EVI relationship resulted from vegetation growth. Then, for the first time a smooth func-
tional relationship between water area proportion and backscatter intensity within a ROI (or region of interest) 
was constructed. Consequently, subpixel water–land separation based on the mechanism process was realized. 
The novel method could not only work at large-scaled rivers (satellite-visible) but perform well at small-scaled 
rivers within a water-land mixed pixel (satellite-invisible). A total of 197 measurements for river widths in China 
during 2016 ~ 2021 were used for model verification, demonstrating a positive correlation between EVI and σ, 
with R2 ranging from 0.16 to 0.69 (P<0.05). The RW-vebasud exhibited superior accuracy in calculating river 
width compared to the widely used MNDWI (modified normalized difference water index). The Root Mean 
Square Error (RMSE) decreased by 4.32 ~ 6.65 m when the river width was less than 90 m and by 66.12 % when 
it exceeded 90 m, compared to MNDWI. Remarkably, RW-vebasud maintains satisfactorily high accuracy (the 
Nash-Sutcliffe efficiency coefficient: NSE=0.70 and RMSE=3.19) even at the spatial scale less than 3 times the 
image resolution, breaking the internationally accepted limit that river width extraction can only be accurate 
when the river width is greater than 3 times the satellite resolution. Moreover, the accuracy of this method is 
better than that with the currently well-known global river width datasets GRWL and MERIT Hydro. For the RW- 
Vebasud/GRWL/MERIT Hydro datasets, the NSE=0.99 /0.93/0.87, the RMSE=5.99/42.33/54.27, and the R2 =

0.99/0.91/0.74, respectively. The application of RW-vebasud in China shows that river widths in wet and dry 
seasons exhibited an increasing trend over the previous six years (2016–2021), as global warming accelerated 
glacier melting and increased rainfall quantity, with an average growth rate of 2.26 m/year (wet, P<0.05) and 
2.17 m/year (dry, P<0.05), respectively. In response to the summer/winter Asian monsoons, most rivers widen 
in summer. The largest river width occurs in the Yellow River Basin (YLRB, 155.28 m on average), while the 
smallest occurs in the Hai River Basin (HARB, 22.99 m on average). The method proposed in this study can 
provide efficient techniques for surface river-width reconstruction which can greatly facilitate global resource 
and environmental modelling.
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1. Introduction

Global resource and environmental modelling in terms of biogeo-
chemical cycle and carbon emission reduction are essential for sus-
tainable development of society and economy. Rivers serving as primary 
pathways for water and nutrient transportation from land to the ocean, 
play significant roles in biogeochemical cycle and water-atmosphere 
carbon movement (Ling et al., 2019; Yang et al., 2020; Messager 
et al., 2021). River width, as one of the most important river parameters 
essential for water-related hazards prevention (Huang et al., 2018; 
Verma et al., 2021; Durand et al., 2023), affects the rates of biogeo-
chemical exchange and carbon dioxide movement (Allen et al., 2018; 
Raymond et al., 2013).

River width data acquisition methods are mainly divided into two 
categories: field measurement methods and remote sensing image 
extraction methods. Field measurement methods are often laborious, 
time-consuming, costly and face challenges related to rugged terrain 
(Yang et al., 2020; Tarpanelli et al., 2023), thus limiting their wide 
application. Extracting river width data based on remote sensing images 
provides a cost-effective alternative (Stumpf et al., 2016; Ling et al., 
2019; Verma et al., 2021). The precision of river width measurement 
through remote sensing primarily depends on the strength of the algo-
rithm employed to recognize river (Yang et al., 2020). The algorithm can 
be classified as threshold method, classifier method and automatic 
method. The threshold method is used to classify remote sensing images 
from the spectral information of images. At present, water index 
methods (MNDWI and AWEI) and OTSU methods are commonly used 
(Wang et al., 2021). The main classifier methods are the support vector 
machine (SVM) and decision tree (CART) (Yu et al., 2022). The auto-
matic method combines the threshold method and the classifier method, 
using a global–local idea to automatically extract information from large 
areas and large-scale water areas (Lu et al., 2021; Pavelsky and Smith, 
2008). In recent studies, the feasibility of using these methods to esti-
mate river width by remote sensing has been successfully demonstrated. 
Scholars have used single-sensor satellite data of different resolutions, e. 
g., 250 m moderate resolution imaging spectroradiometer (MODIS) data 
(Pavelsky and Smith, 2008), synthetic aperture radar (SAR) images 
(Verma et al., 2021), and 30 m Landsat imagery (Allen and Pavelsky, 
2018; Hou et al., 2019), to produce a series of river width datasets, 
including the MERIT Hydro datasets (Yamazaki et al., 2019), the North 
American River Width (NARWidth) dataset (Allen and Pavelsky, 2015), 
and the Global River Widths from Landsat (GRWL) Database (Allen and 
Pavelsky, 2018), etc. However, single-sensor satellites have limitations 
in comprehensive parameter retrieval, and are difficult to handle com-
plex environments. Combining SAR and optical data allows for 
leveraging the strengths of both sensors, reducing errors from single data 
sources, and enhancing the accuracy and reliability of river width cal-
culations (Tarpanelli et al., 2022; Orusa et al., 2023).

Despite the widespread use of these methods, large errors often occur 
because these methods depend heavily on the resolution of the image 
itself. Due to the limited spatial resolution of available noncommercial 
satellite imagery, accurately measuring the width of narrow rivers 
(width < 30 m) remains a challenging task (Lin et al., 2020; Lu et al., 
2021; Sun et al., 2018). During the space-based measurement of river 
width, errors are commonly introduced in the pixels where water and 
land appear intermixed. The reason is that a river boundary often runs 
through image pixels instead of following their edges; consequently, a 
river boundary is difficult to capture well (Foody et al., 2005; Ling et al., 
2019; Yin et al., 2022). Consequently, remote sensing imagery faces 
challenges in accurately identifying hydraulically invisible small rivers, 
particularly those that have widths narrower than the resolution of a 
single pixel (e.g., <10 m for Sentinel, a noncommercial satellite). They 
can only be identified by field measurements, drone flights or high- 
resolution commercial satellites. Acquiring such high-resolution im-
ages is often constrained by factors such as limited financial resources, 
time constraints, governmental policies, and geographical limitations. 

These obstacles hinder the widespread adoption and practical applica-
tion of high-resolution remote sensing imagery. These factors have 
resulted in significant underestimations the importance of river net-
works in biogeochemical cycles (Zhao et al., 2019; Wang et al., 2021; Lu 
et al., 2021). Therefore, to overcome the challenge of accurately 
measuring river width in cases where the rivers are narrower than the 
spatial resolution of the remotely sensed imagery, scientists began to use 
the subpixel decomposition method to improve the precision of river 
width extraction (Ling et al., 2019). The current mainstream methods 
for spectral unmixing include Linear Spectral Mixture Model and 
Nonlinear Spectral Mixture Mode. However, these methods heavily rely 
on accurate spectral information and mixing pixel proportions, often 
leading to unclear physical interpretations. These issues severely hinder 
research on water resource management, water hazard prevention and 
carbon dioxide movement across the world, especially in data-scarce 
hydraulically invisible small river areas of China. Therefore, there is 
an urgent need to develop a new mechanistic subpixel decomposition 
method that is less dependent on ground observation data and can be 
widely applied.

From a mechanistic perspective, for vegetation regions containing 
water bodies, their spectral characteristics primarily depend on water 
and vegetation. The spectral properties of unit area water bodies show 
minimal temporal variation (Canisius et al., 2018; DeVries et al., 2020), 
whereas vegetation spectral characteristics are highly sensitive to 
vegetation structural features (Van Tricht et al., 2018; Zhou et al., 
2019). Spectral properties vary temporally and spatially with vegetation 
growth and distribution. Vegetation grows throughout the year, 
differing in spatial vegetation types and canopy structures, leading to 
uncertainty in the relationship between vegetation feature parameters 
and spectral properties. Hence, vegetation spectral characteristics are 
temporally and spatially unstable, posing challenges and uncertainties 
in spectral unmixing (Harfenmeister et al., 2019; Nguyen et al., 2016; 
Tao et al., 2016). Thus, this study aims to propose a globally-applicable 
method for decomposing vegetated land–water mixed pixels, indepen-
dent of ground observations and with physical mechanisms to enhance 
river width inversion precision by eliminating the impact of vegetation 
growth. In this paper, (1) the key factors that affect the change in river 
width are analyzed, the influence mechanism and model are deter-
mined, a calculation framework is built, and the river width is calcu-
lated; (2) the accuracy of the method is calculated, and the uncertainty 
of the method is analyzed based on measuring river widths; (3) the river 
width of nine typical river basins (including hydraulically invisible small 
rivers) in China from 2016 to 2021 are calculated using the verified 
method, and the spatiotemporal variation characteristics are analyzed. 
The outcome of this study could greatly facilitate policy-making in terms 
of water-related hazards prevention, biogeochemical cycle and carbon 
emission reduction across the world.

2. Study area

China, with a land area of over 9.6 million km2, features low-lying 
topography from west to east (Wang and LinHo, 2002; Yang et al., 
2020). China has approximately 50,000 rivers, including a multitude of 
exterior rivers, and is geographically stratified into nine basins: the 
Songliao River Basin (SLRB), Hai River Basin (HARB), Inland River Basin 
(INRB), Yellow River Basin (YLRB), Huai River Basin (HURB), South-
–West River Basin (SWRB), Yangtze River Basin (YZRB), South–East 
River Basin (SERB) and Pearl River Basin (PERB) (Yang et al., 2020). 
Since river width extraction is more accurate at more than 3 times the 
satellite resolution (Allen and Pavelsky, 2018), we classified all rivers by 
river width based on 10 m resolution Sentinel data as follows: large river 
(LR) (>90 m), middle river (MR) (30 ~ 90 m), small river (SR) (10 ~ 30 
m), and narrow river (NR) (<10 m). To facilitate the analysis of river 
width differences among river basins in China, we randomly and evenly 
selected 197 representative sections on grade 1–5 rivers. The river and 
representative section distributions are shown in Fig. 1.
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3. Materials and methods

3.1. Data

3.1.1. Sentinel-1 and -2 data
Among noncommercial satellites, compared with Landsat and 

MODIS, the Sentinel satellite system, an open access data source, can 
obtain both radar and optical images with relatively fine spatial reso-
lution (~10 m) and high update frequency, or temporal resolution, 
(~5d) (Wang et al., 2019; Yesou et al., 2016). Recently, Sentinel-1 and 
-2 image data have been widely used in flood monitoring, crop growth 
monitoring and so on (DeVries et al., 2020; Song et al., 2021). Therefore, 
Sentinel-1 and -2 images were used for subpixel decomposition in this 
paper to greatly enhance the precision and effectiveness of river width 
extraction.

We obtained 6090 scenes of images from Sentinel-1 and -2 during the 
timeframe spanning from January 2016 to December 2021. The data 
were retrieved from the Google Earth Engine (GEE) web platform 
(Gorelick et al., 2017). The radiometric terrain correction (RTC) is done 
in GEE to mitigate the influence of terrain on backscatter (Small, 2011; 
Vollrath et al., 2020). In this paper, the Sentinel-1 backscatter intensity 
parameter was used, with a range of (0, +∞) (DeVries et al., 2020).

We utilized the top-of-atmosphere datasets from January 2016 to 
November 2018 and the surface reflectance dataset from December 
2018 to December 2021 of Sentinel-2, provided by the European Space 
Agency (ESA). The top-of-atmosphere datasets was atmospherically 
corrected using the Second Simulation of Satellite Signal in the Solar 
Spectrum (6S) model prior to its use (Vermote et al., 1997). Spectral 
bands 2 (blue), 3 (green), 4 (red), 8 (near infrared), and 11 (shortwave 
infrared) were employed to compute the enhanced vegetation index 
(EVI), modified normalized difference water index (MNDWI), and 
fraction of vegetation cover (FVC). Among them, band 11 (with a 

resolution of 20 m) was resampled to 10 m before conducting calcula-
tions. In the optical bands (bands 2, 3 and 4) large cloud proportion in an 
image always lowers the accuracy of calculated river width (Lu et al., 
2022). Thus, we adopted the ratio of cloudy to total pixel number in a 
buffer of 5 km at each river section (Huang et al., 2018), to help select 
images. Based on the Fmask algorithm, only images covering the section 
buffer with an index less than 20 % were selected.

3.1.2. Measured data
In this study, the river width data measured via OvitalMap and in situ 

stations were used as standards to verify the river width calculated by 
our proposed method. OvitalMap is a map browsing application 
compatible with multiple platforms, utilizing the Google API as its 
foundation (Liu et al., 2021). We used 19-level data (resolution 0.30 m) 
to measure the values of river width in space from Jan. 2018 to Dec. 
2019. As shown in Fig. 1, a total of 197 sets of water surface width data 
were obtained. We also obtained measurements from 6 sites in Jinan 
from May to November 2016 and 11 sets of water width data, and the 
range of water surface width variation for all sites was 1.46 ~ 569.76 m. 
For details, see Table 1 and Fig. 1.

*LR: large river (river width > 90 m); MR: middle river (30 m < river 
width < 90 m); SR: small river (10 m < river width < 30 m); and NR: 
narrow river (river width < 10 m).

3.2. Method

This paper proposed a new framework named river width with 
vegetation-backscattered-coefficient-based subpixel decomposition 
(RW-vebasud) to decompose mixed river and vegetated land pixels to 
improve the precision of river width estimation by satellites. The 
detailed process of the method is illustrated in Fig. 2. First, large rivers 
(river width > 90 m) were selected, the region of interest (ROI) of each 

Fig. 1. Representative sections on grade 1–5 rivers from nine basins in China. (a) shows the location of sites and (b)-(k) are true color images from Sentinel-2. LR-RS: 
large river and representative section, MR-RS: middle river and representative section, SR-RS: small river and representative section, and NR-RS: narrow river and 
representative section.
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river was determined according to the vegetation distribution. More-
over, the relationship between the EVI and the backscatter intensity (σ) 
of the nonaqueous area of the ROI was established based on the mech-
anism of the variation of σ with the vegetation index, whereby the 
interference of vegetation growth on σ was eliminated, and the stable 
backscatter intensity series of the nonaqueous region, which is not 
affected by vegetation growth, was obtained. The backscatter intensity 
of the overall ROI varying only with the ratio of the water body (σROI, 

noveg) and not disturbed by vegetation growth, was then calculated to 
establish the functional relationship between the water body percentage 
(Aw/AROI, where Aw is the water body area within the ROI and AROI is 
the area of the ROI) and σROI,noveg (AW/AROI~σROI,noveg). And the rela-
tionship between the ratio of mean FVC values inside the ROI to those of 
neighboring pixels and σROI,noveg was established to calculate σROI,noveg. 
Finally, by combining the two functional relationships derived from 

large rivers mentioned above and applying them to mixed pixel scales, it 
is possible to accurately calculate the water proportion of any river 
section within the study area. The water surface width was obtained 
based on the water body percentage (Aw/AROI) of any river sections in 
the study area.

3.2.1. Selection of the region of interest
To calculate the river width accurately, we selected a relatively 

straight river section with vegetation distribution on both sides. A single 
row of pixels, larger than the temporally maximum river width and 
perpendicular to the direction of river flow, was selected as the region of 
interest (ROI) to ensure that the selected row was covered by vegetation 
on both sides of the river. This can minimize the impact of soil moisture 
variation on the σ, to ensure that the backscattering within ROI changes 
only with the percentage of water and vegetation area. Additionally, 
since the selected areas in this study are all flat and covered in vegeta-
tion, with nearly identical topographic relief and soil roughness within 
each ROI, the influence of these factors on σ was neglected. And we 
visually identified the multi-year (2016–2021) maximum water extent 
(corresponding to the maximum river width) based on MNDWI water 
surface data using Sentinel-2 images (taking partial river sections and 
time as examples in Fig. 3).

3.2.2. Mechanism analysis of the variation in backscatter intensity (σ) with 
the EVI and establishment of the correlation

The total backscatter intensity of each ROI with vegetation cover 
exhibits variations depending on the ratio of vegetation to water area. As 
the backscatter intensity per unit area of water is basically constant, the 
water area backscatter intensity only varies with the water area, i.e., 
with time. Therefore, as long as backscatter intensity of vegetation area 
in a ROI is obtained, the water area backscatter intensity can be calcu-
lated and then the river width in the ROI can be obtained based on the 

Table 1 
Satellite data and ground measurement data.

Data Source River width 
classification

Site 
number

Spatial 
resolution

Period

Sentinel-1 GEE / / 10 m 01/ 
2016–12/ 
2021

Sentinel-2 GEE / / 10 m

Measured 
river 
width

Ovitalmap LR 45 0.30 m 01/ 
2018–12/ 
2019

MR 40
SR 55
NR 57

In situ NR 11 / 05/ 
2016–11/ 
2016

*LR: large river (river width > 90 m); MR: middle river (30 m < river width < 90 
m); SR: small river (10 m < river width < 30 m); and NR: narrow river (river 
width < 10 m).

Fig. 2. Flowchart of the RW-vebasud method.
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water body area. However, the vegetation area backscatter intensity is 
spatially and temporally unstable, making it difficult to calculate the 
backscatter intensity of water bodies. To overcome the impact of vege-
tation growth on σ in different seasons and locations, there is an urgent 
need to eliminate the impact of vegetation growth on the backscatter 
intensity and obtain the temporally and spatially stable vegetation area 
backscatter intensity to obtain the backscatter intensity of the water 
area.

The vegetation index (VI) is frequently employed as a means to 
indicate the status of vegetation growth, and widely used VIs include the 
normalized difference vegetation index (NDVI), EVI, soil adjusted 
vegetation index (SAVI), and perpendicular vegetation index (PVI) 
(Chen et al., 2021b; Gao et al., 2000). By utilizing the blue band, the EVI 
integrates a soil adjustment factor and an atmosphere resistance term. It 
solves the problems of easy saturation of the vegetation index and the 
lack of a linear relationship with actual vegetation cover. Thus, vege-
tation types can be distinguished well, and changes in vegetation 
structure and growth in different seasons and locations can be recog-
nized (Gao et al., 2000). Volume scattering is the main mechanism 
accountable for backscatter from vegetation (Vreugdenhil et al., 2018). 
Research has demonstrated a strong correlation between EVI and vari-
ations in canopy structure, encompassing canopy type, plant physiog-
nomy, and canopy architecture (Teixeira and Souza Filho, 2022; Wang 
et al., 2013). High correlations are often found between structural 
property indicators such as the EVI, biomass, LAI and cross-polarized 
backscatter at the C-band (Vreugdenhil et al., 2018). To eliminate the 
effect of vegetation growth on backscatter intensity, we established a 
correlation between σ and the EVI.

First, the MNDWI of the ROI was calculated based on Sentinel-2 data 
(Eq. 1) (Cordeiro et al., 2021; Xu, 2006), and the OTSU method was used 
to automatically extract the water threshold (Dong et al., 2021; Otsu, 
1979), remove the water part in the ROI and obtain the nonwater part. 

Then, the relationship between vegetation characteristics and σ was 
established in the nonwater part within the ROI range, that is, the 
relationship between the EVI and σ. Finally, considering this relation-
ship, to eliminate the influence of vegetation growth factors on σ over 
time, the backscatter intensity σL of the nonwater part within each ROI 
after removing the influence of vegetation growth factors was 
determined.

(1) Extraction of the nonwater part

Compared to other indices, the MNDWI is generally less influenced 
by the subpixel vegetation component (Duan and Bastiaanssen, 2013). 
Hence, we opted to use the MNDWI for detecting water body changes 
here. Additionally, since the establishment of the EVI and σ relationship 
in this paper is based on large rivers (>90 m), the river width is much 
larger than the uncertainty from the MNDWI extracted water bodies, 
and ignoring the uncertainty of the MNDWI will not affect the accuracy 
of the subsequent results in this paper. 

MNDWI =
B3 − B11
B3 + B11

#(1)

where B3 is the reflectance of the green band and B11 is the reflectance 
of the shortwave infrared band.

After the MNDWI was calculated, the water body threshold was 
automatically extracted using the OSTU method (Dong et al., 2021; 
Otsu, 1979) to identify the nonwater body fraction so that the rela-
tionship between the EVI and σ in this fraction could be explored further.

(2) Establishment of the relationship between EVI and σ

The vegetation backscatter intensity is unstable over time due to the 
changing vegetation structure and water content, which are the key 

Fig. 3. Selection of the region of interest (ROI) based on MNDWI. (a), (f), (k) and (p) represent long-term time series images of four different river sections syn-
thesized from Sentinel-2 bands 8, 4, and 3; (b)-(e), (g)-(j), (l)-(o), and (q)-(t) represent the temporal variation of water surfaces extracted based on MNDWI for the 
four river sections, where the red dashed boxes indicate the maximum water extent. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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factors affecting backscatter intensity for the nonwater part (Land) of 
each ROI and are influenced by vegetation growth (Cui et al., 2022; Tao 
et al., 2016). To explore the correlation between vegetation growth and 
backscatter intensity and to eliminate the temporal instability, we 
selected 45 river sections with widths > 90 m and established the 
vegetation growth characterization index (EVIL) and σL within the 
nonwater part or land for all time series (f1).

Both the NDVI and EVI can reflect vegetation growth changes, but 
soil background noise destroys the spatial consistency of the NDVI due 
to the more serious problem of red light saturation of NDVI data. In 
contrast, EVI addresses potential saturation effects in the red band under 
high biomass vegetation by incorporating the blue band, effectively 
reducing soil background noise. This makes EVI particularly suitable for 
monitoring dense or high biomass vegetation. Sentinel-2 data is used to 
calculate EVI (Eq. 2) (Gao et al., 2000) in this paper. 

EVI = 2.5
NIR − R

NIR + 6R − 7.5B + 1
#(2)

where NIR, R, and B are the surface reflectance of NIR band (Band 8 for 
Sentinel-2), red band (Band 4) and blue band (Band 2), respectively. In 
addition, EVIsoil≈0. Backscatter intensity data were obtained from 
Sentinel-1 images.

(3) Elimination of the vegetation growth factor

As the backscatter intensity (σ) changes with vegetation growth in 
the above established EVI–σ functional relationship and terrestrial 
EVIL=0 represents the state of vegetation in the ROI when leaves are dry 
(which is considered as a state when vegetation is not growing), the 
backscatter intensity at this state can be regarded as that after removing 
the vegetation growth factor. EVIL=0 can represent the true cold, leaf- 
drop state in the deciduous vegetation zone and the assumed extreme 
leaf-drop state in the evergreen vegetation zone. Both indicate that there 
is no vegetation growth. Therefore, we extended the EVI (EVIL) and 
backscatter intensity (σL) curves in the nonwater area in the reverse 
direction to obtain the corresponding σL value when EVIL is 0, that is, the 
backscatter intensity of the nonwater part in the ROI of each site after 
removing the interference of vegetation growth (σL,noveg). Then, the total 
backscatter intensity (σROI,noveg) (Eq. 3) in each ROI after removing the 
influence of vegetation growth no longer changes with vegetation but 
only with the water surface area (AW) in the ROI. Thus, the effect of 
vegetation growth on the backscatter intensity is eliminated. 

σROI,noveg =
σW*AW + mean

(
σL,noveg

)
*AL

AROI
#(3)

where σROI,noveg is the total backscatter intensity within each ROI after 
removing the effect of vegetation growth, AROI is the area of the ROI, AW 
is the water body area within the ROI, i.e., (AROI-AL), AL is the area of 
nonwater body within the ROI, and σW is the backscatter intensity of 
water body. In this paper, we used the smallest backscatter intensity of 
randomly selected 100 water bodies points in the study area (0.000050) 
as σW. Natural features on the ground, like water, possess smooth surface 
and high dielectric constant, causing them to exhibit specular reflective 
characteristics. Consequently, the sensor receives a minimal amount of 
backscatter (DeVries et al., 2020).

In this paper, we screened ROI with cloudiness less than 20 % for 75 
months from 01/2016–12/2021 for analysis following Eqs. 1–3, calcu-
lated the water body index according to Eq. 1, and extracted the non-
water body part within the ROI. Then, we calculated the EVI according 
to Eq. 2 and graded the nonwater body EVI data to obtain the total 
numbers of small, medium and large rivers in China based on the results 
of different time series EVIL and σL for 197 river sections in China. An 
exponential function was fitted to EVIL and σL because it best captured 
the relationship between these variables, leading to the functional 
relationship σL = aebEVIL for EVIL and σL at each river section in the nine 

basins.

3.2.3. The establishment of the functional relationship of AW/AROI ~ σROI, 

noveg (>90 m)
The overall backscatter intensity of a ROI is determined by the 

backscatter intensities of vegetation, soil, and water bodies, among 
which the backscatter intensity of water bodies is the lowest and rela-
tively stable in time and space (DeVries et al., 2020). Thus, once the 
vegetation factor is removed, the larger the ratio of water bodies within 
the same ROI, the lower the overall backscatter intensity of the ROI. And 
the functional relationship between the water proportion and back-
scatter intensity was established on this basis. It is easier to detect 
changes in water surface area than in river width. Consequently, we first 
calculated the water surface area and then computed the river widths 
along a specific river reach following the approach outlined by Huang 
et al. (2018). The proportion of water in the ROI of all time series was 
calculated for each site, and the functional relationship of AW/ 
AROI~σROI,noveg (AW is the area of water in the ROI) was fitted. Since σW is 
a constant value, Eq. 3 is further simplified as Eq. 4: 

σROI,noveg =
mean(σW)*AW + mean

(
σL,noveg

)
*AL

AROI

=
C*AW + σL,noveg*(AROI − AW)

AROI
=

(
C − σL,noveg

)
*

AW

AROI
+ σL,noveg#(4)

where AW/AROI is the proportion of water bodies within the ROI and C is 
a constant, which is 0.000050 here. In addition, we assume there is no 
heterogeneity of backscatter intensity after removing the effect of 
vegetation growth in vegetation area i.e., mean (σL,noveg)= σL,noveg.

Since σL,noveg per unit raster within the ROI of each river section is a 
constant value, it can be seen from Eq. 4 that σROI,noveg is a function of the 
proportion of water bodies within the ROI, and each section has a cor-
responding line due to the difference in σL,noveg. In other words, each 
section of the river has a corresponding linear relationship between the 
proportion of water bodies (AW/AROI) and non-vegetated backscatter. 
Therefore, determining the σL,noveg within an ROI will determine the 
proportion of water bodies (AW/AROI) at this site and σROI,noveg. When 
AW/AROI is 100 %, σROI,noveg is equal to σW. When AW/AROI is 0, σROI,noveg 
is equal to σL,noveg, and when the proportion of water bodies is 100 %, 
(

AW
AROI

,σROI

)

=(1, σW) =(1, C), where C is constant, i.e., all the lines of 

river sections intersect as a point when the water body proportion is 100 
%, as shown in Fig. 4.

3.2.4. The establishment of the functional relationship of σROI,noveg ~ 
FVCROI/FVCnear (>90 m)

After establishing the relationship between AW/AROI and σROI,noveg, 
we can calculate the proportion of water bodies at any site over time 
based on the ROI backscatter intensity (σROI,noveg) that is not affected by 
vegetation growth by using the functional relationship. The backscatter 
intensity values of Sentinel-1 images include vegetation growth factors, 
and thus, σROI,noveg cannot be directly obtained (Bauer-Marschallinger 
et al., 2021). Thus, we calculated σROI,noveg by establishing a functional 
relationship between FVCROI/FVCnear and σROI,noveg. FVC reflects the 
proportion of surface vegetation greenness, and the surface vegetation 
type and growth rate are the main influencing factors. While the vege-
tation types of two adjacent areas are basically the same and the vege-
tation grows simultaneously, FVCROI/FVCnear eliminates the influence 
of greenness and only reflects the proportion of surface water and land, 
and these factors influence the change in σROI,noveg after eliminating the 
vegetation growth (i.e., greenness influence). The overall backscatter 
intensity of the vegetation area is influenced by the water body pro-
portion and vegetation growth factors (Zhou et al., 2019; DeVries et al., 
2020). FVCROI/FVCnear (where FVCROI is the ROI-inside-mixed and 
FVCnear is the ROI-neighboring-pixels mean FVC values) eliminates the 
influence of vegetation growth factors so that the overall backscatter 
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intensity of the ROI is only related to the change in water proportion 
(Fig. 5). Based on this, the functional relationship between the FVC ratio 
of two adjacent ROIs and σROI,noveg can be established, and then the 
values of σROI,noveg can be calculated.

Therefore, we established a relationship between the actual FVCROI/ 
FVCnear and no vegetation growth disturbance σROI,noveg at all times 
within each ROI. Therefore, σROI,noveg for a given month can be obtained 
based on the FVC ratio for that month. The FVCROI/FVCnear ~ σROI,noveg 
line is only related to the variation in the water body ratio. The FVC is 
calculated as shown in Eq. 5 (Gutman and Ignatov, 1998; Yan et al., 
2022). 

FVC =
(EVI − EVImin)

(EVImax − EVImin)
#(5)

where the EVI is the enhanced vegetation index value, EVImax represents 
the maximum EVI value in the area, while EVImin denotes the minimum 
EVI value in the same area.

When choosing the neighboring pixels, to minimize the influence of 
human activities and to ensure that the vegetation types are basically the 
same as those in the ROI, the locations on both sides of the river where 
the ROI will not be flooded are chosen. This is shown in Fig. 5.

When the ROI is all water, the FVC of the ROI=0, i.e., FVCROI/ 
FVCnear is 0, and the σROI,noveg at this point is σW. When the ROI is all 
land, the FVCROI/FVCnear is approximately equivalent to the ratio of the 
mean FVC of the nonwater body part of the ROI to the FVC of the 
neighboring pixels, and the σROI,noveg at this site is approximately equal 
to σL,noveg. Therefore, by determining σL,noveg of a river section through a 
set of EVIL~σL functional relationships and then calculating the mean 

Figure 4. Relationship line of AW/AROI ~ σROI,noveg. C stands for constant. Points of different colors represent ROIs with different σL,noveg values.

Fig. 5. Selection of neighboring pixels (ROI width = maximum river width + 4 pixels).
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FVC value of the nonwater part of the ROI and the neighboring pixel FVC 
ratio, the functional relationship of FVCROI/FVCnear ~ σROI,noveg in the 
river section can be determined. Each river section has an independent 
line (Fig. 6), and the starting FVC ratio of the line is 0.

3.2.5. River width calculation
When calculating the river width with RW-vebasud, the ROI and 

neighboring ROI are first determined. When the river width < satellite 
resolution (e.g., 10 m), the river section is located inside the mixed 
image element, a single pixel containing the river (mixed pixel) is 
selected as an ROI, and then one pixel to the left and right perpendicular 
to the river direction are selected as neighboring pixels. When the sat-
ellite resolution (10 m) < river width < 90 m, a single row of multiple 
pixels including the river width is selected as a single ROI, i.e., mixed 
pixel, and 1–2 pixels on the left and right sides are selected as neigh-
boring pixels. When the river width > 90 m, 1–2 pixels close to the water 
body (extracted based on MNDWI) on both sides of the riverbank are 
selected as mixed images, and 1–2 images are extended outward 
perpendicular to the river direction as neighboring pixels. Then, the 
functional relationships of AW/AROI~σROI,noveg (Fig. 4) and FVCROI/ 
FVCnear ~ σROI,noveg (Fig. 6) are fitted, respectively. Finally, the above 
two functional relationships are combined to calculate the proportion of 
water bodies in any river section to obtain the river width. Details are as 
follows.

It is assumed that the vegetation types on both sides of the river in a 
mixed pixel are the same as those of its neighboring pixels. First, σL,noveg 
of the nonwater part of the neighboring image is calculated based on the 
EVIL~σL functional relationship set (i.e., σL,noveg of the mixed pixel). 
Next, Figs. 4 and Fig. 6 are used to determine the AW/AROI~σROI,noveg 
lines corresponding to the mixed pixel and FVCROI/FVCnear ~ σROI,noveg 
line. Then, the ROI’s FVCROI and the neighboring pixel’s FVCnear of all 
time series are calculated. Since we assume that the mixed image 
element FVC is equal to the neighboring image element FVC when the 
mixed image element is all terrestrial, the FVCROI/FVCnear range should 
be between 0 and 1. Therefore, we multiply the FVCROI by the corre-
sponding adjustment factor α (Eq. 6) to ensure that the FVCROI is always 
smaller than the FVCnear. Finally, the FVCROI/FVCnear of the mixed 
pixel for a certain month is calculated, and σROI,noveg of the river section 
is determined based on the FVCROI/FVCnear ~ σROI,noveg line (Fig. 6), 
followed by the proportion of the water body based on the AW/ 
AROI~σROI,noveg line of the river section (Fig. 4), which is the proportion 

of the water body of the mixed pixel. The river width is calculated as 
shown in Eq. 7. 

α =
FVCnear − 0.001

FVCROI
#(6)

where α is the adjustment factor, FVCnear is the neighboring pixel FVC 
value, 0.001 is the correction factor, and FVCROI is the mixed pixel FVC 
value. 

W =
AW

L
#(7)

where W represents the mean width of the given river reach, AW in-
dicates the water surface area and L is the length of the river reach.

3.2.6. Application of the above RW-vebasud method to Sentinel
When using data from a Sentinel satellite to calculate the river width, 

which is less than the satellite resolution (10 m), the river is located 
inside mixed pixel, and the water body cannot be identified by satellite. 
Therefore, RW-vebasud can be applied directly to decompose the mixed 
pixel and obtain the water surface width.

For rivers where the width falls between 10 m and 90 m, only one or 
two pixels in the center of the river within the ROI can be identified. 
Decomposing mixed pixels with RW-vebasud can enhance the precision 
of water surface width extraction.

For rivers exceeding a width of 90 m, water surface width can be 
basically identified by satellite, but there are still mixed pixels on the left 
and right banks, which can be further decomposed by RW-vebasud to 
enhance the precision of estimating river width. The left and right banks 
are calculated independently, and the water surface widths of the two 
banks are determined separately. Finally, the total water surface widths 
are calculated based on Eq. 8: 

wf = ws + wl + wr#(8)

where wf is the calculated water surface width at the river section, ws is 
the water surface width extracted based on the MNDWI, wl and wr are 
the water surface width calculated by mixed pixel decomposition on the 
left and right bank.

3.2.7. Accuracy validation
The performance of RW-vebasud is ultimately assessed using the 

Fig. 6. Relationship line between FVCROI/FVCnear and σROI,noveg. Points of different colors represent ROIs with different σL,noveg values.
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Nash–Sutcliffe efficiency (NSE) index, root mean square error (RMSE), 
and percentage error (PE) following the research of Fabre et al. (2019)
and Ling et al. (2019). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
|simi − obsi|

2

√

#(9)

NSE = 1 −

∑n
i− 1(obsi − simi)

2

∑n
i− 1(obsi − obs)2 #(10)

PE =
1
N
∑N

i=1

(
simi − obsi

obsi

)

#(11)

where obs and sim represents measured and estimated data while obs is 
the observed data mean; and n is the number of sites.

4. Results

4.1. Mechanism analysis of the variation in σ with the EVI and the 
establishment of the correlation

The accuracy of the correlation between EVIL and σL is influenced by 
the specific conditions of the study sites. Overall, EVIL and σL showed a 
positive correlation, with an R2 range of 0.16 to 0.69 and 75.61 % of the 
river sections above 0.40. The best fitting relationship between EVIL and 
σL was found in the SLRB, with R2 varies between 0.44 and 0.69, and 
some river sections in the southern basin had R2 values below 0.40. On 
the one hand, this is related to the fact that the quality of Sentinel-2 
visible light images is affected by cloudy weather and fog in southern 
China. Although images with less than 20 % clouds were selected in this 
paper, the percentage of clouds in the selected areas is still relatively 
high (>15 %), while it is only approximately 5 % in the north. On the 

other hand, it is also due to the influence of different crops within the 
ROI, and the relationship between the two is more complicated than that 
of other vegetation due to the large variation in the EVI and σ in different 
growing periods of crops. In order to guarantee the precision of the 
simulation results, we only retained the curves with better fitting of σ 
with the EVI, i.e., the river sections with R2 > 0.40 (i.e., R>0.6, 
P<0.005), to analyze the pervasive EVI–σ relationship.

In addition, based on the fitted functional relationship σL = aebEVIL , 
we calculated σL (σL,noveg), i.e., the value of a, for each river section 
when the EVIL is 0. The results show that σL,noveg varies from basin to 
basin and is between 0.0014 and 0.15. The SLRB, INRB, HARB, and 
YLRB in northern China have low σL,noveg values (0.0014–0.027). The 
HURB, YZRB, SWRB, SERB and PERB in South China have high σL,noveg 
(0.0020 ~ 0.15). σL,noveg reflects the condition of the underlying surface 
after removing the vegetation growth factor. The mean value of σL,noveg 
differs greatly between the southern and northern watersheds in China, 
with the southern watershed (0.010) being 52 % higher than the 
northern (0.0048). The main reason for this is that the soil moisture 
(0–50 cm) in the south is 27.90 % higher than that in the north, with 
more precipitation in the south and generally higher soil water content 
(Zhang et al., 2016; Li et al., 2022).

After calculating σL, the backscatter intensity value σROI,noveg was 
calculated based on Eq. 3 for each ROI after removing the vegetation 
growth factor, which provides data that can be later analyzed to 
examine the functional relationship between proportion of water bodies 
and σROI,noveg.

4.2. The establishment of the functional relationship of AW/AROI~σROI, 

noveg (>90 m)

To analyze the relationship between the proportion of water bodies 
and the backscatter intensity after removing the vegetation growth 

Fig. 7. Functional relation lines between AW/AROI and σROI,noveg (SLRB: Songliao River Basin; INRB: Inland River basin; HARB: Hai River Basin; YLRB: Yellow 
River Basin; HURB: Huai River Basin; YZRB: Yangtze River Basin; SWRB: Southwest River Basin; SE: Southeast River Basin; and PERB: Pearl River Basin). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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factor, we established the AW/AROI~σROI,noveg relationship line accord-
ing to Fig. 7 based on the backscatter intensity value σROI,noveg calculated 
in Eq. 3. The results showed that AW/AROI and σROI,noveg have a negative 
correlation, i.e., the value of σROI,noveg decreased as the water bodies area 
increased within the ROI. The slopes of the lines were different at 
different river sections within each basin (with different intercepts σROI, 

noveg), i.e., the backscatter intensity σL,noveg after removing vegetation 
disturbance was different at different river sections within the ROI 
(0.012 ± 0.0067) (Eq. 4). In addition, the range of variation of the σROI, 

noveg line was different in each basin, i.e., σL,noveg was different. The 
range of variation of σL,noveg in the SLRB was small (0.002 ~ 0.01), 
which is mainly due to the low heterogeneity of soil roughness and little 
variation of soil water content (0.15 ~ 0.35 m3/m3) in the SLRB (Li 
et al., 2022). In contrast, σROI,noveg had the largest range of variation 
within the INRB due to the large variation in soil water content within 
the basin (0–0.55 m3/m3) (Li et al., 2022). The river sections selected in 
this paper are spatially evenly distributed so that the river sections 
within each basin are representative of the overall characteristics of the 
basin. It can also be seen from Fig. 7 that the mean values of σROI,noveg 
were different in different basins. The PERB had the highest σROI,noveg 
value (0.020 ± 0.013), followed by the Southeast Basin (0.018 ±
0.0051). The YLRB had the lowest σROI,noveg values (0.0047 ± 0.0032).

After obtaining the AW/AROI~σROI,noveg functional relationship 
(Fig. 7) for each river section, the FVCROI/FVCnear ~ σROI,noveg func-
tional relationship (Fig. 6) were further established to determine the 
σROI,noveg value. Then, the above two functional relationships were 

combined to calculate the proportion of water bodies at each river 
section.

4.3. The establishment of the functional relationship between FVCROI/ 
FVCnear and σROI,noveg (>90 m)

To calculate the proportion of water bodies after determining the 
σROI,noveg values at each river section through the AW/AROI~σROI,noveg 
functional relationship, we established the FVCROI/FVCnear ~ σROI,noveg 
functional relationship based on Fig. 6. First, FVCROI/FVCnear (Eq. 5) 
was calculated for each river section of the nine basins for all time series, 
and the FVCROI/FVCnear ~ σROI,noveg relationship line (Fig. 8) was fitted 
based on Fig. 6.

As shown in Fig. 8, a set of lines with different slopes was obtained 
for each basin. The FVCROI/FVCnear values are positively correlated 
with σROI,noveg, and σROI,noveg reached its maximum value when FVCROI/ 
FVCnear was at its maximum (i.e., no water bodies in the ROI). The 
FVCROI/FVCnear values were different in different basins, and the 
FVCROI/FVCnear values were lower in the SERB and HARB, i.e., the 
vegetation cover was similar in the mixed pixels and adjacent pixels, 
indicating that the vegetation distribution on both sides of the river was 
more uniform in these two basins.

The FVCROI/FVCnear values of the SLRB, YZRB and SWRB were 
higher, i.e., the differences in vegetation cover in the mixed pixels and 
adjacent pixel were large, indicating that the vegetation cover on both 
sides of the river in the basin was different and unevenly distributed. 

Fig. 8. Functional relation lines between FVCROI/FVCnear and σROI,noveg (SLRB: Songliao River Basin; INRB: Inland River Basin; HARB: Hai River Basin; YLRB: 
Yellow River Basin; HURB: Huai River Basin; YZRB: Yangtze River Basin; SWRB: South–West River Basin; SE: South–East River Basin; and PERB: Pearl River Basin). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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After obtaining the FVCROI/FVCnear ~ σROI,noveg functional relationship, 
the FVCROI/FVCnear at the moment of image acquisition was calculated 
using Sentinel-2 images to determine the σROI,noveg at the corresponding 
time, and then the river width was calculated according to Eqs. 6–8.

4.4. Calculation results of river width in different phases for the last 6 
years for each basin in China

Based on Eqs. 6–8, the river widths of 197 river sections were 
calculated, and the river width varied from 0.77 to 566.82 m. We 
calculated the river widths of nine river basins in China using the RW- 
vebasud method and explored the spatiotemporal distribution and 
variation patterns of the water surface width of Chinese rivers accord-
ingly. Taking into account the climatic features, we concentrated on two 
seasons for all of China’s rivers: the wet season (May to September) and 
the dry season (November to March). The spatiotemporal changes of 
river width in China between 2016 and 2021 were depicted based on the 
average width of major basins.

In general, the mean river width varied considerably among basins. 
Spatially, the rivers with larger six-year mean river widths mainly 

include the YZRB, PERB, YLRB, SLRB, and SWRB. The average river 
width in the YLRB was the largest (155.28 m), followed by the YZRB 
(91.63 m), and the HARB was the smallest (22.99 m). The uniformity of 
river width distribution also varied from basin to basin. The YZRB, 
HARB, HURB, etc., with a humid climate and relatively flat terrain had a 
relatively uniform distribution of river widths. The INRB rivers are un-
evenly distributed due to topographic factors that determine the shape 
of river systems (dendritic, reticulated, radial, etc.). Rivers generally 
start in the high mountains and then flow downward along the terrain. 
The INRB is a mountainous and hilly area with undulating terrain, so the 
width of the river is unevenly distributed. Temporally, over the last 6 
years, the average river width in China has shown an increase during 
both wet and dry seasons, with average increasing rates of 2.26 and 2.17 
m/year, respectively. In wet season, the average river widths of the 
YZRB, HARB, HURB, YLRB and PERB displayed an increasing trend 
(P<0.05); in dry season, the average river widths of the YZRB, HARB, 
HURB, SWRB, YLRB and PERB showed an increasing trend (P<0.05) 
(Fig. 9). Affected by the Asian summer and winter monsoons, river 
widths also exhibit seasonal variations. For the YLRB, YZRB and SWRB, 
the mean absolute (relative) variation in river width was 32.34 m 

Fig. 9. Temporal and spatial distributions of river width in nine major river basins in China from 2016 to 2021.
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(20.83 %), 23.71 m (25.87 %), and 14.73 m (19.66 %) in the dry and wet 
seasons, respectively. During the study period, most (72.03 %) of the 
rivers, such as the Yellow River, Hai River, and Huai River (Fig. 9), 
widened in summer.

4.5. Calculation and verification of river width at different scales (<10 
m, 10 ~ 30 m, 30 ~ 90 m and > 90 m)

The river width results estimated by the proposed methods were 
compared with values measured in situ and estimated by the MNDWI. 
We segmented the statistics for different river widths (<10 m, 10 ~ 30 
m, 30 ~ 90 m, >90 m) (Fig. 10c ~ j). The RMSEs extracted by the 
MNDWI method/calculated by RW-vebasud were 5.94/1.62 m, 9.84/ 
3.19 m, and 12.95/5.42 m for river widths < 10 m, 10 ~ 30 m, and 30 ~ 
90 m, respectively. When the river width is larger than 90 m, the RMSE 
difference was still large. The RMSE of RW-vebasud was 66.12 % lower 
than that of the MNDWI method. As shown in Fig. 10a, river widths less 
than 10 m (Sentinel-2 resolution) were not identified in the scatter plot 
of the water bodies obtained by Sentinel-2-based MNDWI extraction. By 
using RW-vebasud, the river width can be calculated at a subpixel scale 
of < 10 m. Overall, the improvement in NSE and the decrease in RMSE 
showed the effectiveness of RW-vebasud for river width measurement at 
the four scales with river widths of < 10 m, 10 ~ 30 m, 30 ~ 90 m and >
90 m.

Fig. 11 shows a comparison of the river width extracted directly by 
MNDWI and RW-vebasud methods when actually measured river width 
values are less than 90 m. The river widths of the water bodies extracted 
directly by the MNDWI of Sentinel-2/RW-vebasud were 0.80/0.96 for 
NSE, 9.03/3.83 m for RMSE, and 0.96/0.97 for R2. The river widths 
obtained with RW-vebasud were more accurate than those extracted 
directly by the MNDWI. When the river widths of the water bodies were 
extracted directly by the MNDWI of Sentinel-2, the river widths were 
underestimated and deviated significantly (the mean relative error was 

71 %), while the deviation was smaller (the mean relative error was 17 
%) when using the RW-vebasud method (Fig. 11b).

To better compare the accuracy of river width estimation by MNDWI 
with those of RW-vebasud in this paper, we further analyzed the per-
centage error (PE) values for different river widths (Fig. 12). We found 
that the relative errors of river width estimation decreased with 
increasing river widths for both river width estimation methods. In 
general, the error in the estimated river width is primarily attributed to 
the presence of mixed pixels near the river boundary. Thus, the esti-
mated error (the degree of estimated deviation) decreases as the river 
width increases. The results show that the relative errors of river widths 
estimated by MNDWI are always larger than those by RW-vebasud, as 
shown in Fig. 12. For rivers with widths wider than 90 m, the absolute 
PE values of river widths extracted by the MNDWI and estimated by our 
RW-vebasud method are all less than 25 %. While for rivers with widths 
less than 10 m, the PE values less than 25 % for river widths obtained by 
MNDWI estimation and based on RW-vebasud are 0 % and 58 %, 
respectively. It can be seen from Fig. 12 that the estimated result by 
MNDWI is always smaller than the actual river width by 71 % on 
average, which is associated with the limitation of satellite spatial res-
olution and the selection of the MNDWI water body threshold. It is a 
great challenge for the method to reasonably determine the threshold 
value.

5. Discussion

5.1. Analysis of the relationship between the EVI/proportion of water 
body/FVC ratio and σ

The results of this paper show that EVIL and σL of the ROI time series 
show a positive correlation. This is corroborated by many scholars’ 
studies; The research of Cui et al. (2022) in the Genhe watershed, China, 
demonstrated that the backscatter coefficient increases are caused by 

Fig. 10. Estimation accuracy of the MNDWI method and RW-vebasud: (a) < 10 m; (b) 10 ~ 30 m; (c) 30 ~ 90 m; and (d) > 90 m.
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the direct scattering from the upper canopy, which is amplified as the 
scattering increase with the height of the canopy, and decreases due to 
the withering of vegetation. The research of Stendardi et al. (2019) in 
the South Tyrol Basin, Italy found that the cross-polarized VH back-
scatter coefficients obtained from Sentinel-1 satellite data exhibit a 
significant contribution from vegetation and demonstrate a strong cor-
relation with the NDVI. The mechanism for positive correlation between 
EVIL and σL is that the SAR backscatter signal intensity depends on 
dielectric (mainly controlled by moisture content) and geometric 
properties (e.g., surface roughness, vegetation canopy roughness, soil 
type and moisture, canopy water content, and canopy structure) of the 
target; So backscatter intensity within each ROI is influenced by the soil 
water content, vegetation water content, and vegetation canopy struc-
ture within that ROI, and the backscatter intensity changes with EVI as 
the vegetation growth changes (Canisius et al., 2018; DeVries et al., 
2020). The positive correlation between EVIL and σL in this paper means 
that from sparse to lush vegetation, with EVI increases volume scattering 
and canopy water content of vegetation increase, so does the backscatter 
intensity. Holtgrave et al. (2020) in Germany believes that the correla-
tion between vegetation and SAR indices is also due to the fact that both 

the two indices are influenced by biomass, which justified our results. 
However, Van Tricht et al. (2018) in Belgium holds different opinion 
that the increase in vegetation index correlates well with the decrease in 
predominantly VV backscatter as the plant undergoes its growth phase. 
The discrepancy attributes to the fact that their studies focused on crops 
while ours focused on natural vegetation. In other words, our method is 
more suitable for application in areas covered by natural vegetation. 
Selection of ROI should avoid croplands.

The R2 of the fitted relationship between EVIL and σL in this paper 
ranges from 0.44 to 0.69, and in some river sections of the southern 
watershed is below 0.40. The reason is that although the images with 
less than 20 % clouds were selected in this paper, the percentage of 
clouds in the selected satellite images of the southern region is still 
relatively high (>15 %), which is due to the rainy weather in the south 
and the difficulty to completely remove the clouds. This is consistent 
with researches from Domnich et al. (2021) in the Northern European 
terrestrial area which indicates that clouds pose the primary hindrances 
to regular land monitoring, greatly diminishing the practicality of op-
tical satellite data. Li et al. (2021a) used satellite imagery to delineate 
river widths on the Yellow River and demonstrated that the presence of 

Fig. 11. Estimation accuracy of the MNDWI method and RW-vebasud (<90 m): (a) MNDWI method and (b) RW-vebasud.

Fig. 12. Frequencies of different percentage errors for river width produced by satellite and the RW-vebasud method (RW is the river width, MNDWI means 
identified river width by the MNDWI, RW-vebasud means estimated river width using our method).
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cloud directly influences the quality of the satellite imagery, which 
further justified our results. On the other hand, the lack of a good fitting 
relationship between EVIL and σL is also due to the multiple different 
crops within the ROI, as the relationship between the EVI and σ in 
different growing periods of crops is more complex compared to natural 
vegetation. For example, Nguyen et al. (2016) examined the correlation 
between the temporal changes in SAR backscatter and the growth cycle 
of rice plants in the Mekong Delta, Vietnam, and found that the back-
scatter coefficients gradually increase during the growing period. Har-
fenmeister et al. (2019) explored SAR backscatter development in wheat 
and barley fields in Northeast Germany and found increasing signal 
attenuation due to the growth of vegetation during the spring season and 
stable signal attenuation once barley reached a specific height with the 
emergence of flag leaves. Specifically, the variety of crop species, the 
different crop structures, growing periods and water contents in 
different growing periods within ROIs lead to a low overall correlation 
between EVIL~σL (Nguyen et al., 2016; Whelen and Siqueira, 2017; 
Harfenmeister et al., 2019). In other words, EVIL~σL is not highly 
correlated in areas of intense human activity and is more applicable to 
natural vegetation areas with less human activity. Selection of ROI 
completely covered by natural vegetation will significantly improve the 
goodness of fitting relationship of EVIL~σL.

In this paper, it is found that the water area proportion (AW/AROI) is 
negatively correlated and FVC ratio (FVCROI/FVCnear) is positively 
correlated with the total backscatter intensity within each ROI after 
removing the effect of vegetation growth (σROI,noveg). Our assumption is 
that the larger the proportion of water bodies in ROI is, the lower the 
backscatter intensity. Chen et al. (2021a) from China found that radar 
signals exhibit near-zero values over still water. Research of DeVries 
et al. (2020) utilized all accessible Sentinel-1 images to promptly depict 
surface inundation during flooding events in Greece, Houston and Texas, 
which found that the smooth, open water surfaces exhibit very low 
backscatter due to specular reflection. Soman and Indu (2022) use 
Sentinel-1 radar imagery to map inland water dynamics automatically in 
Madhya Pradesh, India and found that water has the lowest backscatter 
intensity. All these studies justified our assumption in this paper. 
However, White et al. (2015) reviewed several techniques to illustrate 
the potential of SAR for monitoring wetlands in Canada, found that 
waves in water often make water backscatter increased to values similar 
with land features. And Ramsey et al. (2013) utilized SAR data to 
monitor the occurrence of inundation in Louisiana coastal marshes and 
found that shallow water creates a rough water surface, thereby 
increasing the backscatter. In other words, floods and shallow water 
(depth < 20 cm) may introduce uncertainties into the river-width 
calculator and should be avoided when using our method.

5.2. Accuracy assessment

This paper found that the estimation accuracy of river width 
improved as the river width increased when using our method. Many 
scholars’ studies are consistent with our findings, for instance, Ling et al. 
(2019) developed a method to measure river wet width (>5 m) at the 
subpixel scale based on Landsat imagery in the northwestern region of 
Oregon, USA, and found that the extent of overestimation and under-
estimation declined as the river width increased. Xue et al. (2022)
proposed an automated method for extracting river width in the Loess 
Plateau, China, and found that the average error decreased as the river 
width increased. Compared with the MNDWI method, our RW-vebasud 
method demonstrates significant advantages when the river width is less 
than 90 m. This is because the MNDWI method cannot extract river 
widths smaller than 10 m based on current non-commercial satellite 
images. However, the RW-Vebasud method can as it is able to work at 
sub-pixel scales, enabling estimation of river widths less than 10 m. This 
demonstrates significant advantages of our method. Additionally, for 
river widths greater than 10 m, the MNDWI can extract but with poor 
accuracy (NSE=-1.78 and RMSE=9.84 for river widths of 10–30 m), and 

only for river widths greater than 30 m the extraction will be more ac-
curate. The reason for this is that the general river width extraction 
method is limited by the satellite resolution, which is usually more ac-
curate when the river width exceeds three times the resolution of the 
satellite (Pavelsky and Smith, 2008; Yamazaki et al., 2014; Allen and 
Pavelsky, 2015; Feng et al., 2019; Li et al., 2021; Liang et al., 2022; Xue 
et al., 2022), but our RW-vebasud method can maintain high accuracy at 
less than 3x resolution (10–30 m) (NSE=0.70 and RMSE=3.19). This 
suggests that our study breaks through this internationally recognized 3 
× resolution limitation and opens up new directions for fully exploiting 
satellite information. For remotely sensed imagery with a much higher 
spatial resolution, e.g., finer than 1 m, our method can further improve 
the monitored river width accuracy.

We also compared the RW-vebasud method with other sub-pixel 
decomposition methods derived from 10-meter resolution images. 
Bishop-Taylor et al. (2019) proposed a sub-pixel method for waterline 
extraction, achieving a good precision with a RMSE of 1.43 m when 
upscaling from 2-meter imagery to 10-meter ideal imagery for waterline 
extraction. Comparably, the RW-vebasud method has a RMSE of ~ 0.81 
m when used to extract water line. Zhou et al. (2023) used Bishop- 
Taylor’s method to estimate river width along the Luo River (narrower 
than 500 m) in China, yielding a RMSE of 4.89 m. In contrast, the 
estimation using the RW-vebasud method resulted in a RMSE of 4.27 m. 
These highlight our method’s advantage in the accuracy of river width 
calculation. In addition, Wang et al. (2022) introduced a method 
AHSWFM, yielding a RMSE of 0.04 m for natural and artificial water 
impoundments with average area ranging from 0.14 to 0.18 ha. We also 
applied our method to calculate water body areas for river segments of 
similar size range, yielding an estimated RMSE of 0.015, showing higher 
estimation accuracy. This again justified the accuracy of our method.

The findings demonstrate that the error in the river width estimation 
based on our RW-vebasud method is small and closer to the measured 
values. To further demonstrate this, we also compared the river width 
results > 30 m extracted by the RW-vebasud method with the currently 
publicly available river width datasets GRWL and MERIT Hydro 
(Fig. 13). From Fig. 13, we can find that the results obtained by RW- 
vebasud (NSE=0.99, RMSE=5.99 m, and R2 = 0.99) outperform those 
with the GRWL datasets (NSE=0.93, RMSE=42.33 m, and R2 = 0.91) 
and the MERIT Hydro datasets (NSE=0.87, RMSE=54.27 m, and R2 =

0.74), which proves that our method is more accurate. This is because 
the GRWL dataset represents static river widths based on satellite im-
ageries shot in mean-discharge months. Therefore, compared with real- 
time measured river width, our real-time estimation of river widths is 
more accurate. In addition, for rivers greater than 90 m, our estimate of 
river width (RMSE=5.94 m) is better than the NARWidth dataset by 
Allen and Pavelsky (2015), with an RMSE of 38 m. This is primarily 
because our use of Sentinel satellite imagery (10 m) provides higher 
resolution than Landsat satellite imagery (30 m) used in NARWidth 
dataset. This suggests the selection of satellite imageries with finer 
resolution can improve the accuracy of river width extraction. More-
over, our river width estimate is also better than the bankfull river width 
result of Li et al. (2021a) on the Yellow River, in which the RMSE of 
ours/Li’s is estimated to be 5.86/7.455 m.

To analyze the reliability of our validation process, we compared it 
with the GRWL and MERIT Hydro river width datasets and found that 
the MERIT Hydro dataset underestimated. Yamazaki et al. (2014) con-
ducted a study comparing river width with pre-existing datasets for the 
Mississippi and Congo Rivers, and the MERIT Hydro dataset’s river 
width algorithm (global river width algorithm) was found to have a 
slightly underestimation, which is consistent with our validation pro-
cess. Although our method demonstrates higher accuracy compared to 
the GRWL and MERIT datasets, it currently does not provide global river 
width measurements for non-vegetated areas like these two datasets, 
which is an area requiring further exploration
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5.3. Temporal and spatial variations in river width in China from 2016 to 
2021

We found that the YLRB has the largest average river width, followed 
by the YZRB. In contrast, Yang et al. (2020) found that the average river 
widths in the SERB and YZRB were larger than in other basins when 
estimating river widths in nine major basins in China, which is incon-
sistent with our finding that the average river width in the YLRB was the 
largest. This is mainly because they mainly considered rivers larger than 
30 m and did not include rivers smaller than 30 m in the YZRB and SERB, 
so the average river width of each basin was large. For further verifi-
cation, we recounted the rivers with greater than 30 m river width in our 
results, and the average river width from largest to smallest is 
YZRB>SERB>YLRB, which is in accordance with the results reported by 
Yang et al. (2020). This proves the correctness of our results, and at the 
same time, our results include all types of rivers in the basin, i.e., large, 
medium and small rivers. In addition, the results are closer to reality, 
which shows that our study is more comprehensive in consideration and 
more reasonable in calculation.

The results of this paper show that the average river width increases 
in China from 2016 to 2021, while the river usually widens in summer 
during the year. In wet seasons, the increase in river width in the YZRB, 
HARB, YLRB, HURB, and PERB is attributed to the increased precipita-
tion and flood intensity (Zhang et al., 2021; Su et al., 2016). For 
example, Zhang et al. (2021) examined the spatiotemporal variation in 
rainfall season precipitation characteristics in China from 1960 to 2018, 
revealing an increasing trend in heavy and very heavy precipitation 
during the rainy season. This justifies our results. In the dry season, the 
increased width of nonflood rivers in the YLRB and SWRB is associated 
with increased runoff due to accelerated glacial melting and increased 
annual precipitation on the Tibetan Plateau. Lutz et al. (2014) found that 
runoff is expected to increase for upstream SWRB until 2050 due to 
accelerated melting and heightened precipitation. Su et al. (2016) re-
ported that the Mekong, Yellow, Salween, Yangtze, Brahmaputra, and 
Indus River Basins exhibit increasing trends in runoff, attributed to 
increased rainfall and glacier melting. These factors justify our study. 
The rivers widen in summer mainly as a result of the impact of the Asian 
monsoons (Wang et al., 2022). Moreover, it was found that the differ-
ences between wet and dry season river widths are larger in the YLRB, 
YZRB, and SWRB compared to other basins. This is due to a large 
contrast in precipitation levels between the dry and wet seasons in these 

three basins, leading to a significant variance in runoff and, conse-
quently, a marked distinction in river width (Wu et al., 2019; Wen et al., 
2021). Especially in the global warming situation, the difference be-
tween dry and wet season precipitation is more obvious, and in most 
areas of China, the wet season is characterized by more concentrated 
precipitation, while the dry season experiences increased aridity (Yang 
et al., 2020).

Our study introduces σROI,noveg as an intermediate variable and 
indirectly calculates AW/AROI from FVCROI/FVCnear instead of directly 
calculates. The reason is that σROI,noveg is derived based on mechanistic 
processes and makes the whole AW/AROI calculation process less 
empirical, avoiding the uncertainties introduced by satellite data noises 
when directly and empirically fitting AW/AROI and FVCROI/FVCnear 
using optical image data. On the other hand, the amount of available 
data obtained from optical images is small for areas heavily affected by 
cloud cover, making it difficult to establish the relationship between 
AW/AROI and FVCROI/FVCnear. However, by introducing the interme-
diate variable σROI,noveg derived through mechanic formula derivation, 
the establishment of such relationships is easier and the accuracy is 
improved greatly.

Moreover, there is some uncertainty in the results of this paper, and 
further research is needed in the future. First, the accuracy of the results 
is still negatively influenced by clouds due to limitations in the cloud 
identification algorithm, although the current proportion of cloud im-
ages screened is less than 20 %. In the future, it is necessary to explore 
new ways for river width extraction based on SAR data from e.g. 
Sentinel-1, which is not disturbed by clouds. Second, the method pro-
posed in this paper is currently only applicable to rivers with vegetation 
cover, excluding conditions of flood or shallow water (depth less than 
20 cm). Exploration of the method for calculating river widths appli-
cable to multiple types of substrates (e.g., both sides are rocky) is needed 
in the future. Finally, as the method requires the establishment of ROIs 
based on river locations for global application, accurate river positions 
are necessitated. Furthermore, it is worth noting that this study selected 
ROIs that are not affected by tree canopy shadows from overhead 
vegetation bordering the river, because the shadows on the water can 
change spectral reflectance and backscatter response. In future appli-
cations, it is necessary to eliminate tree shadows before use to ensure 
higher accuracy.

Fig. 13. Comparison of RW-vebasud calculated river widths with the GRWL and MERIT Hydro river width datasets.
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6. Conclusion

When the river width is larger than the satellite resolution, or hy-
draulically invisible, because of the presence of land–water mixed 
pixels, a small threshold of the MNDWI will lead to a large amount of 
land being extracted as water bodies, while a large threshold will easily 
lead to a small river width. Thus, it is a great challenge to determine the 
threshold reasonably. The present study proposed a subpixel decom-
position method with a physical mechanism without relying on ground 
observations. Based on Sentinel-1 and -2 satellite images, we decom-
posed water–land mixed pixels to enhance the precision of river width 
inversion, applied the validated method to estimate the river widths of 
typical sections (including hydraulically invisible small rivers) in 
China’s major basins from 2016 to 2021, and analyzed their spatial and 
temporal variation characteristics. The results show the following:

(1) Significantly breakthrough was made in reducing vegetation 
growth influence on the stability of the backscatter intensity and EVI 
relationship (σ-EVI). The EVI and backscatter intensity of vegetation 
zones within the ROI were positively correlated. Selection of ROI should 
avoid croplands. Completely covered by natural vegetation will signif-
icantly improve the goodness of fitting relationship of σ-EVI. (2) The 
river width calculated by RW-vebasud was more accurate than that 
directly extracted by the MNDWI, with the NSE increasing by more than 
0.48 and the RMSE decreasing by 4.32 ~ 6.65 m when the river width 
was less than 90 m. (3) The accuracy of RW-vebasud was better than that 
of the current well-known global river width datasets, GRWL and MERIT 
Hydro. For the RW-vebasud/GRWL/MERIT Hydro datasets, the 
NSE=0.99/0.93/0.87, RMSE=5.99/42.33/54.27, and R2 = 0.99/0.91/ 
0.74, respectively. (4) RW-vebasud maintained high accuracy 
(NSE=0.70 and RMSE=3.19) at less than three times the image resolu-
tion (10–30 m), breaking the internationally accepted limit that river 
width extraction is more accurate when the river width is less than three 
times the satellite resolution. In other words, our methods can be suc-
cessfully applied to any spatial scale regardless of the spatial resolution 
of satellite imagery including both hydraulically invisible small and 
hydraulically visible large rivers. While floods may introduce un-
certainties into the river-width calculator and should be avoided when 
using our method. (5) The Yellow River Basin (YLRB) (155.28 m on 
average) in China has the largest average river width, while the Hai 
River Basin (HARB, 22.99 m on average) has the smallest average river 
width including all types of rivers in the basin. (6) The average river 
width in the wet and dry seasons in China showed an increasing trend 
during 2016 ~ 2021 and the rivers widen in summer mainly due to the 
impact of the Asian monsoons.

The outcome of this study can provide an effective method to extract 
river width at all scales by using satellite images, which can greatly 
reduce the uncertainties in river width calculations across the world. It 
also broke the bottleneck of strong spatial and temporal heterogeneity of 
σ-EVI, which resulted from vegetation growth making it impossible to 
establish a stable σ-EVI relationship and long-puzzled the global scien-
tists. Moreover, it solved the problem of insufficient mechanisms in 
previous river width calculation methods, thereby avoiding the signifi-
cant errors arose when applying them to small and medium-sized rivers. 
It might provide support for water resource assessments and water- 
related hazards. Noticeably, the method proposed in this paper is 
currently only works in vegetated areas. Additionally, this method can 
be attempted with other data sources. However, substituting with data 
of lower spatial resolution may decrease estimation accuracy.
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