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blooms and help reduce occurrence risk.
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With increased global warming, cyanobacteria are blooming more frequently in lakes and reservoirs, severely
damaging the health and stability of aquatic ecosystems and threatening drinking water safety and human
health. There is an urgent demand for the effective prediction and prevention of cyanobacterial blooms. However,
it is difficult to effectively reduce the risks and loss caused by cyanobacterial blooms because most methods are
unable to successfully predict cyanobacteria blooms. Therefore, in this study, we proposed a new cyanobacterial
bloom occurrence prediction method to analyze the probability and driving factors of the blooms for effective
prevention and control. Dominant cyanobacterial species with bloom capabilities were initially determined
using a dominant species identification model, and the principal driving factors of the dominant species were
then analyzed using canonical correspondence analysis (CCA). Cyanobacterial bloom probability was calculated
using a newly-developedmodel, afterwhich, the probablemutation pointswere identified and thresholds for the
principal driving factors of cyanobacterial bloomswere predicted. A total of 141 phytoplankton data sets from 90
stations were collected from six large-scale hydrology, water-quality ecology, integrated field surveys in Jinan
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City, China in 2014–2015 and used formodel application and verification. The results showed that there were six
dominant cyanobacterial species in the study area, and that the principal driving factorswerewater temperature,
pH, total phosphorus, ammonia nitrogen, chemical oxygen demand, and dissolved oxygen. The cyanobacterial
blooms corresponded to a threshold water temperature range, pH, total phosphorus (TP), ammonium nitrogen
level, chemical oxygen demand, and dissolved oxygen levels of 19.5–32.5 °C, 7.0–9.38, 0.13–0.22 mg L−1,
0.38–0.63 mg L−1, 10.5–17.5 mg L−1, and 4.97–8.28 mg L−1, respectively. Comparison with research results
from other global regions further supported the use of these thresholds, indicating that this method could be
used in habitats beyond China. We found that the probability of cyanobacterial bloom was 0.75, a critical point
for prevention and control. When this critical point was exceeded, cyanobacteria could proliferate rapidly, in-
creasing the risk of cyanobacterial blooms. Changes in driving factors need to be rapidly controlled, based on
these thresholds, to prevent cyanobacterial blooms. Temporal and spatial scales were critical factors potentially
affecting the selection of driving factors. This method is versatile and can help determine the risk of
cyanobacterial blooms and the thresholds of the principal driving factors. It can effectively predict and help pre-
vent cyanobacterial blooms to reduce the global probability of occurrence, protect the health and stability of
water ecosystems, ensure drinking water safety, and protect human health.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

With the development of industry and agriculture, large amounts of
nutrients discharged into rivers and lakes, and the eutrophication of
water bodies has continued to increase (Eom et al., 2017; Cremona
et al., 2018; Zhao et al., 2018). The increase in global warming is causing
frequent water bloom (Joehnk et al., 2008). The massive propagation
and decay of algae reduces the dissolved oxygen content of the water,
leading to the death of aquatic animals and severely damaging aquatic
ecosystems (O'Boyle et al., 2016). Cyanobacterial blooms also produce
a variety of biological toxins, the most common and harmful being
microcystin (Scherer et al., 2017; Dalu and Wasserman, 2018), which
can damage tissues such as the liver, kidney, heart, gonads, and nervous
system of vertebrates (Yang et al., 2016; Zi et al., 2018). Outbreaks of
cyanobacteria not only jeopardize the health of aquatic ecosystems,
but also severely affect drinking water safety, and consequently
human health (Brookes and Carey, 2011; Carmichael and Boyer, 2016;
Tollefson, 2018).

Cyanobacteria have unique physiological characteristics, making it
easy for them to become dominant species and form blooms (Su et al.,
2019). First, they are among the simplest unicellular prokaryotes; the
cells have pseudo vacuoles or pseudo vacuole clusters, and adjusting
their buoyancy allows them to occupy a favorable light energy absorp-
tion position in the water column (Reynolds et al., 1981). Second,
most cyanobacteria have a glial cell coating composed of microfibrils,
which serve important functions, such as protection against herbivo-
rous grazing and digestion (Hu, 2011). Third, cyanobacteria utilize
exopolysaccharides to aggregate single cyanobacteria cells into groups
and form air-filled intercellular spaces to create buoyancy, physically fa-
cilitating the formation of cyanobacterial blooms (Zhang et al., 2011;
Xiao et al., 2012). Lastly, cyanobacteria can efficiently absorb and con-
centrate low concentrations of CO2 (Espie et al., 1988) and easily store
excess nutrients (Pettersson et al., 1993). Nitrogen-fixing cyanobacteria
can also convert and absorb nitrogen from the air (Blomqvist et al.,
1994), rendering cyanobacteria more competitive than other algae.

The occurrence of cyanobacterial blooms is usually affected by envi-
ronmental conditions, especially water quality (Park et al., 2017; Bucak
et al., 2018) (Table 1). Algal proliferation depends on nutrient availabil-
ity. Slow flow rates in lakes and reservoirs and insufficient water self-
purification capacities, with a long renewal period, can lead to nutrient
accumulation, and consequently, conditions conducive to
cyanobacterial blooms (Havens et al., 2001; Arhonditsis and Brett,
2005; Wang et al., 2016; Kozak et al., 2019). Under sufficient nutrient
conditions, cyanobacterial blooms are also affected by various factors,
such as water temperature (Descy et al., 2016), pH (Teixeira de
Oliveira et al., 2011), and light (Soares et al., 2009) (Table 1). It is impor-
tant to identify dominant cyanobacterial species and major water qual-
ity factors that drive cyanobacterial blooms, as well as determine the
threshold ranges of principal driving factors, to prevent and control
cyanobacterial blooms (Huber et al., 2012).

Recent studies on the principal driving factors behind cyanobacterial
blooms (Table 1) are based predominantly on all cyanobacterial data in
the study areawithout identifying prior and crucial species (Phlips et al.,
2011; Duan et al., 2018). Furthermore, the analysis of cyanobacteria is
often based on data at the genus level (Tian et al., 2013; Hu et al.,
2018); therefore, interspecies differences within a genus are ignored,
reducing the accuracy of driving factor determination. Moreover, the
determination of driving factor thresholds is primarily based on water
quality measurements following cyanobacterial blooms (Hu et al.,
2010). Most cyanobacterial bloom prediction models based on these
measurements are black-box models without clear mechanisms, such
as genetic algorithms (Sivapragasam et al., 2010), Bayesian networks
(Rigosi et al., 2015), and neural networks (Descy et al., 2016; Tao
et al., 2017). Furthermore, most models rely on monitoring
cyanobacterial bloom data, so they cannot be applied to areas where
cyanobacterial blooms have not yet been detected (Giannuzzi et al.,
2012; Zhao and Huang, 2014; Bukowska et al., 2017) or applied directly
to other regions beyond the monitoring area. They also cannot effec-
tively predict the range and time of cyanobacterial blooms, limiting
our ability to predict and control blooms. Further studies are necessary
to determine the dominant cyanobacterial species in a habitat and their
principal driving factors, to establish versatile cyanobacterial bloom
probability prediction models thereby, predicting the occurrence of
cyanobacterial blooms globally.

The aims of this study were to present a versatile method to predict
the occurrence of cyanobacterial blooms and determine the thresholds
of bloom water quality driving factors, based on the dominant
cyanobacterial species. We hypothesized that the water quality factors
did not interact with each other, that is, a change in one factor did not
directly lead to changes in other factors. We also expected that water
qualitywould reflect the degree of eutrophication, and high eutrophica-
tion of a water body would lead to the outbreak of cyanobacterial
blooms. The method from this study is user-friendly and could signifi-
cantly enhance the prevention of cyanobacterial blooms globally, ensur-
ing the health of aquatic ecosystems, drinking water, and humans.

2. Material and methods

2.1. Study area

Jinan or Spring City (36.0–37.5°N, 116.2–117.7°E) is a pilot city for
the construction of a civilized and ecological city in China. It has a
steeper topography in the South than in the North since it is bordered
by Mount Tai in the South. The Yellow River traverses the city (Fig. 1).
The altitude ranges from−30 to 937 m ASL, with highly contrasting re-
lief. The average annual temperature is 14.3 °C, and the highest average



Table 1
Driving factors of cyanobacteria blooms within the last 10 years from the literature.

Driving factors Taxonomic
level

Surroundings Study area References

Total phosphorus, water temperature Genus Farmland Lake Beysehir, Turkey Bucak et al., 2018
Genus Farmland Daechung Reservoir, Korea Joung et al., 2011

Total phosphorus, total nitrogen, water temperature Genus Aquaculture
pond

A typical freshwater aquaculture pond,
China

Hu et al., 2018

Genus Farmland Baekje Reservoir, Korea Park et al., 2017
Genus Farmland A tropical lake, Brazil Figueredo and Giani, 2009
Genus Farmland Indian River Lagoon, Florida, USA Phlips et al., 2011

Genus Farmland Lake Taihu, China
Li et al., 2014
Duan et al., 2018

Species Farmland Nansi Lake, China Tian et al., 2013
Total phosphorus, total nitrogen, water temperature, turbidity Genus Farmland Five shallow lakes, Europe Descy et al., 2016
Total phosphorus, total nitrogen, water temperature, pH Genus Farmland Cachoeira Dourada, Brazil Teixeira de Oliveira et al.,

2011

Genus Farmland
Maixi River estuary to the Baihua
Reservoir, China

Li et al., 2013

Total phosphorus, total nitrogen, nitrate nitrogen, ammonia nitrogen Genus Farmland Lake Erie, U.S./Canada Steffen et al., 2017
Total phosphorus, total nitrogen, chemical oxygen demand Genus Farmland and

town
Lake Dianchi, China Hou et al., 2004

Total nitrogen/total phosphorus, nitrate nitrogen Genus Farmland and
town

Ford Lake, Michigan, USA Lehman et al., 2009

Water temperature, light intensity Species Farmland Funil Reservoir, Brazil Soares et al., 2009
Water temperature, pH, total phosphorus, turbidity Genus Farmland Mundau reservoir, Brazil Dantas et al., 2008
Water temperature, nitrate nitrogen, ammonia nitrogen Genus Farmland Lake Chaohu, China Cai and Kong, 2013
Total nitrogen, total phosphorus, total nitrogen/total phosphorus Genus Farmland Lake Taihu, China Xu et al., 2010
Total nitrogen, total phosphorus, dissolved oxygen, conductivity, water
temperature

Genus Farmland Lake Erhai, China Zhu et al., 2018

Total phosphorus, pH, water temperature, turbidity, nitrate nitrogen,
light intensity

Genus Farmland Chaohu, China Zhang et al., 2016
Genus Farmland Dashahe and Gaozhou Reservoirs, China Yuan et al., 2015

Water temperature, pH, total phosphorus, nitrate nitrogen, ammonia
nitrogen

Genus Farmland Faxinal Reservoir, Brazil Becker et al., 2009
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monthly temperature is in July, ranging from 26.8 to 27.4 °C, while
the lowest is in January, ranging from 1.4 to 3.2 °C (Cui et al., 2009;
Zhang et al., 2010). Jinan City represents a typical developing city
in China, with an area of 8227 km2 and a population of 5.69 million
(Zhang et al., 2007). With rapid industrial development and urbani-
zation in recent decades, large amounts of nutrients flow into its
lakes and reservoirs. Therefore, lakes and reservoirs are severely pol-
luted, and the risk of cyanobacterial blooms is unprecedentedly high.
As a result, drinking water and human health and well-being are in-
creasingly being threatened (Hong et al., 2010). There are N30 lakes
and reservoirs in Jinan, most with water supply functions. There is
an urgent need to control cyanobacterial proliferation to prevent
cyanobacteria bloom outbreaks and protect the drinking water and
human health.

2.2. Data

Based on a comprehensive analysis of the characteristics of the wa-
tershed and river system of Jinan City, 13 reservoirs located in different
tributaries and two typical lakes were selected for monitoring. In the
spring, summer, and autumn of 2014 and 2015, six large-scale field in-
vestigations concurrently recorded a large quantity of water quality and
biological data in the 15 lakes and reservoirs, to analyze the principal
driving factors of cyanobacterial blooms and determine their threshold
values.

2.2.1. Phytoplankton data
A 1 L organic glass bottle was used to sample water from 0 to 2 m

below the water surface. As quickly as possible, a 1.5% concentration
of Lugol's solution was added to the bottle. In the laboratory, a 24-h
sedimentation method was used to concentrate the phytoplankton
sample to 30 mL. To determine individual biovolume, individual
size (length, height, and breadth or diameter) of a species was
measured using a plankton microscope. The average size of at least
50 individuals was used to calculate the average biovolume of a spe-
cies (SL167-961); for more details refer to Zhao et al. (2012).

2.2.2. Water quality data
In the six field investigations, 480 water samples were collected.

All water quality parameters are listed in Table 2. The physical pa-
rameters were measured in situ with portable equipment and the
chemical parameters were obtained by testing water samples in
the laboratory within 24 h of collection from themonitoring stations.
A spectrophotometer (DR5000), atomic absorption spectrophotom-
eter (Thermo M6), and ion chromatograph (DIONEX-600) were
used to measure chemical parameters; for more details refer to
Zhao et al. (2015b).

2.3. Data analysis

2.3.1. Identification of dominant cyanobacterial species
We used a dominance model and the mutation point method to de-

termine the dominant cyanobacterial species. The dominance model
(Eq. (1) by Zhao et al., 2014) reflected the importance of both the abun-
dance and biomass of a species to its community and avoided bias
caused by using only abundance or biomass.

Im;i ¼ ω1Pa;i þω2Pb;i

Pa;i ¼ NiP
Ni

; Pb:i ¼
BiP
Bi

;

8<
: ð1Þ

where Im is the dominance of a cyanobacterial species; i is the ith

cyanobacterial species; Pa and Pb refer, respectively, to the ratios of the
species' abundance and biomass to the total of the communities with
consideration to the spatial presence/absence of the species; Ni is the
abundance of the ith cyanobacterial species and Bi is the biomass of the



Fig. 1. Lakes and reservoirs of Jinan City and the suburban areas, showing locations of hydrology, water quality, and aquatic ecosystem monitoring stations.
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species; and ω1 and ω2 are the weightings of abundance and biomass,
respectively.

ω1

ω2
¼ a

b
ω1 þω2 ¼ 1:0

(
; ð2Þ

where a and b are the positions of the centroid in the one-dimensional
coordinates Pa and Pb; a and b can be determined using the density func-
tion of themass systems, which can be rewritten in this study as follows:

a ¼
P

Pa;iNiP
Ni

b ¼
P

Pb;iBiP
Bi

8>><
>>: ð3Þ



Table 2
Physical and chemical environmental parameters included in the Jinan City monitoring program (the numbers in parenthesis indicate mean ± SD) (Zhao et al., 2015a).

Parameter Name Abbreviation Unit Range (mean ± SD)

Physical Air temperature AT °C 15.0–33.1 (20.3 ± 4.6)
Water temperature WT °C 16.70–30.60 (19.8 ± 2.85)
pH pH 7.26–8.60 (7.84 ± 0.35)
Conductivity Cond mS/m 326–4130 (2132.1 ± 913)
Transparency Trans Cm 0–600 (352.21 ± 111.32)
Turbidity Turb Degree 0.52–924 (432.42 ± 139.53)

Chemical Calcium Ca mg L−1 17.63–315.83 (123.54 ± 58.39)
Chlorine Cl mg L−1 11.85–786.15 (345.68 ± 176.39)
Sulfate SO4 mg L−1 43.47–932.22 (462.58 ± 179.28)
Carbonate CO3 mg L−1 0–12.50 (6.54 ± 2.83)
Bicarbonate HCO3 mg L−1 50.05–845.32 (357.68 ± 132.11)
Total alkalinity TA mg L−1 51.48–693.35 (235.87 ± 107.60)
Total hardness TH mg L−1 141.12–989.59 (532.12 ± 198.71)
Dissolved oxygen DO mg L−1 1.17–9.92 (5.61 ± 2.41)
Total nitrogen TN mg L−1 0.25–21.84 (5.68 ± 4.18)
Ammonia NH4-N mg L−1 0.07–9.42 (3.54 ± 2.63)
Nitrite NO2 mg L−1 0–1.41 (0.87 ± 0.30)
Nitrate NO3 mg L−1 0.05–18.85 (10.57 ± 2.90)
Permanganate index COD_Mn mg L−1 0.57–16.36 (5.63 ± 3.34)
Biochemical oxygen demand BOD mg L−1 0–35.80 (15.28 ± 7.39)
Total phosphorus TP mg L−1 0–3.64 (1.69 ± 0.78)
Fluoride Fluoride mg L−1 0.18–2.30 (1.37 ± 0.49)

The other 10 heavy metal ions, e.g., copper, zinc, and lead, were below detection levels, and have not been included in the above table.
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Eqs. (2), (3) are used to determineweightings in Eq. (1) in this paper
(Zhao et al., 2015b).

After the dominance indices of all species were calculated, the dom-
inant species of the biological community were identified by the
breakpoint (i.e., the point on the dominance curve where the curvature
was significantly smaller after that point than the curvature before)was
determined based on curvature of cumulative dominance using Eq. (4)
(Gippel and Stewardson, 1998; Zhao et al., 2015b).

K ¼
d2y

dx2

1þ dy
dx

� �2
� �3

2

; ð4Þ

where K represents the curvature of the dominance curve. This method
selects the dominant species in the aquatic population objectively.

2.3.2. Determination of principal driving factors by CCA
We used CCA to determine the principal driving factors of the dom-

inant cyanobacterial species. Canonical correspondence analysis (CCA)
is a multivariate gradient analysis method designed to elucidate rela-
tionships between biological assemblages of species and water quality
factors and has been widely used to predict interactions between com-
munity structure and environmental variables (Godoy et al., 2002;
Martino and Able, 2003; Biswas et al., 2014). It requires two data matri-
ces, which were the species and environmental data matrices in this
study. Habitat factors influencing cyanobacterial communities included
physical and chemical water quality parameters.

Detrended canonical analysis (DCA) is an analytical method for spe-
cies and environmental factors similar to CCA. It is often used to test the
“arc effect” before using CCA (Palmer, 1993). If the gradient of the first
axis in DCA is large, the species responses can be assumed to be
unimodal and CCA can be used without the “arc effect” (Lepš and
Šmilauer, 2003). Otherwise, other analytical methods have to be used.
In this way, the impact of the “arc effect” on the analytical method can
be minimized.

We used DCA before the CCA in the present study; the gradient of
the first axis was long, so CCA was the appropriate analytical method.
Methods using unimodal ordination with a Monte Carlo permutation
test were used to select principal factors (p b 0.05) from the three
aforementioned parameters that underpinned the spatial heterogeneity
of the cyanobacterial communities. The figures of CCA were drawn
using Canoco 4.5.

In the CCA ordination map, the arrowed lines represented environ-
mental factors. The biplot scores of each environmental factor indicated
its impact on thebiomes. The larger the biplot scores, the greater the im-
pact. The more the absolute value of the cosine of the angle between a
species and an environmental factor is closer to 1, the closer the rela-
tionship between the species and the environmental factor. Thus, the
principal driving factors of the biomes can be selected.

2.3.3. Calculation of cyanobacterial bloom occurrence probability
We proposed a new cyanobacterial bloom occurrence prediction

model to compensate for the shortcomings of the previous bloom pre-
diction models and quantitatively calculate the risk of cyanobacterial
bloom outbreaks and thresholds of principal driving factors. The occur-
rences of cyanobacterial bloomswere affected by numerouswater qual-
ity factors. Under field conditions, the effects of individual water quality
factors on cyanobacterial populations are difficult to isolate (Wu et al.,
2016). Although the effects can be studied using laboratory cultures
with controlled variables (Moller et al., 2014), the application of re-
search results is limited to specific algal species and water quality fac-
tors. Moreover, the effects of the same factors on cyanobacteria have
significant gaps in different environmental conditions (Spencer et al.,
2011). Therefore, previous cyanobacterial bloom prediction models
have previously been based on black-box models, such as neural net-
works (Descy et al., 2016). However, these models heavily rely on ma-
chine learning, and their accuracy requires an excessive quantity and
quality of data during and after blooms (Tao et al., 2017). Consequently,
these types of models cannot analyze outbreak risks and critical envi-
ronmental driving factors without cyanobacterial blooms.

In this study, the effects of various water quality factors on
cyanobacterial populations were separated and quantified based on
the previous screening of dominant cyanobacterial species and the de-
termination of principal driving factors. If all driving factors were in
their optimized value ranges, the cyanobacterial bloom outbreaks
were likely to occur. The closer the measured values of driving factors
were to their optimized values, the higher the probability of
cyanobacterial bloom occurrence. A cyanobacterial bloom occurrence
probability (P) prediction model was thus, established (Eqs. (5) and
(6)) in combination with the results of the principal driving factors, to



842 C.S. Zhao et al. / Science of the Total Environment 670 (2019) 837–848
determine the risk of occurrence and principal driving factor thresholds
under conditions of no cyanobacterial blooms.

P ¼ 1−
Xn
i¼1

ai
Xi−Xb

i

��� ���
Xb
i

0
@

1
A ð5Þ

and

Xn
i¼1

ai ¼ 1; ð6Þ

where P represents the probability of a cyanobacterial bloom; n is the
number of principal driving factors; ai is theweight of the ith driving fac-
tor; Xi is the measured value of the ith driving factor, and Xi

b is the opti-
mum value of the ith driving factor.

The values of aiwere determined by the biplot scores in CCA sorting.
If the first canonical axis explained the relationship between environ-
mental variables and species, then the ai value was normalized based
on the absolute values of the biplot scores on the first canonical axis of
each environmental variable. If the first canonical axis could not explain
the relationship between environmental variables and species, then the
rootmean square of the biplot scores in both thefirst and second canon-
ical axis was normalized to obtain the ai value.

The values of Xib were determined using the habitat suitability index
(HSI). Habitat suitability is defined as the preference of an aquatic or-
ganism for a particular set of habitat attributes (Vadas and Orth, 2001;
Vismara et al., 2001). It is widely used to indicate the degree of prefer-
ence of species for different habitats (Leclerc et al., 2003; Ahmadi-
Nedushan et al., 2006). It varies between 0 and 1, and a higher HSI
value indicates a more suitable habitat (Bovee, 1998). The value range
of each driving factor, from the minimum to maximum, were classified
into five levels of sub-ranges to plot the HSI graph. The range of the
maximum HSI was then selected as the optimum range of the driving
factor, and themedian value of this rangewas taken for Xib, the optimum
value of this driving factor.

3. Results

3.1. Dominant cyanobacterial species

A total of 141 phytoplankton species belonging to 8 phyla, 10 classes,
13 orders, 27 families, and 29 genera were collected from 90 stations in
Fig. 2.Mutation point of dominance index for cyanobacte
the six large-scale field investigations. Based on these species, dominant
cyanobacterial species were determined using Eqs. (1)–(3). In Eq. (1),
the weights of abundance and biomass, ω1 and ω2, were 0.67 and
0.33, with which species dominance values were then calculated. After
sorting the dominance from large to small and calculating the degree
of accumulation, the dominance curve was plotted (Fig. 2). The muta-
tion point was then calculated from the dominance curve as (6,
0.902). Six species before the mutation point were then selected as
dominant in the cyanobacterial population including, Phormidium
tenue (SP17), Oscillatoria tenuis (SP15), Microcystis aeruginosa (SP10),
Merismopedia tenuissima (SP13), Raphidiopsis sinensia (SP19), and
Merismopedia glauca (SP18).
3.2. Principal driving factors and cyanobacterial bloom probability
prediction

The interpretation percentage of species-environment relation on
the first canonical axis (horizontal axis in Fig. 3) reached 65.3% in
Fig. 3a and 59.4% in Fig. 3b, indicating that the first axis could explain
the relationship between environmental variables and species. So we
could choose the principal driving factors based on the biplot scores of
each environmental factor on the first canonical axis. The results of
CCA showed that the principal physical water quality factors affecting
the distribution of dominant cyanobacterial species in Jinan were
water temperature (WT) and pH; the principal chemical water quality
factors were total phosphorus (TP), ammonia nitrogen (NH4-N), chem-
ical oxygen demand (COD), and dissolved oxygen (DO) (Fig. 3). SP10,
SP13, SP15, and SP18 are significantly affected by WT. In addition, TP
significantly affected SP15, SP17, and SP18, in a similar manner as
NH4-N and DO; whereas, SP10 and SP13 were significantly affected by
COD.

All the principal driving factors mentioned above, along with domi-
nant cyanobacteria identified, were used for further CCA analyses
(Fig. 4a) to determine the weights of the driving factor. The interpreta-
tion percentage of the species-environment relation reached 63.5% on
the first canonical axis, so the biplot scores on the first canonical axis
could represent the impact of environmental factors on species. The ab-
solute values of biplot scores on the first axis for WT, pH, TP, NH4-N,
COD, and DO were 0.673, 0.311, 0.488, 0.875, 0.927, and 0.946, respec-
tively. After the values were normalized, weights ai in Eq. (5) for WT,
pH, TP, NH4-N, COD, and DO were as 0.179, 0.082, 0.129, 0.232, 0.246,
and 0.132, respectively.
ria in lakes and reservoirs, determined using Eq. (4).



Fig. 3. Canonical correspondence analysis of biological and water quality factors at
monitoring stations located in reservoirs and lakes in 2014–2015 (the abbreviations of
parameters are listed in Table 2. (a): Physical water quality factors, (b): Chemical water
quality factors).

Fig. 4. Changing of bloom probability with dominant cyanobacterial species density.
(a) Canonical correspondence analysis of principal driving factors for weight
determination; (b) Relationship between the probability of blooms (P) and cumulative
density of cyanobacteria (C). Points where P is N0.75 (red box) represent summer
samplings at the two stations J7 and J13. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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The five levels of the parameters were determined according to the
ranges in Table 3. The HSI value of each fractionwas calculated to deter-
mine the HSI graphs (Fig. 5), which indicated that the optimum values
(Xi

b in Eq. (5)) of WT, pH, TP, NH4-N, COD, and DO were 26 °C, 7.5,
0.175 mg L−1, 0.5 mg L−1, 14 mg L−1, and 6.62 mg L−1, respectively.

Values of ai and Xi
b were then used to calculate the occurrence prob-

ability (P) of cyanobacterial blooms at each monitoring station with
Eq. (5). The probability (P) of a cyanobacterial outbreak was plotted as
the x-axis, and the cumulative density (C) of cyanobacteria was plotted
as the y-axis (P-C relation, Fig. 4b). When the P value exceeded
0.70–0.80, the density increased rapidly with increases in P.

An exponential function for the P-C relation was then fitted as y =
2.5698e10.4895x (R2 = 0.9237). Levene's test for equality of variances
revealed that simulated C had the same distribution as that of the ob-
served C (F=0.49, p N 0.05), indicating that the simulated and observed
C data sets had homogeneity of variance. Furthermore, the paired-
samples t-test revealed that the means of the two data sets were
equal at a significance level of 5% (t = 0.261, p N 0.05). According to
the mutation point identification model in Zhao et al. (2015b), the sec-
ond derivative was calculated for the fitting equation, indicating that
the curvature of the curve changed significantly before and after P =
0.75, which was then taken as the point of mutation (shown in the
red box in Fig. 4b). When P was N0.75, all the principal driving factors
were within their optimal range, therefore cyanobacteria rapidly prolif-
erated, further increasing the risk of a cyanobacterial bloom.

Fig. 4b shows that the P-value of each point does not vary consider-
ably over time. The spatial distribution figure (Fig. 6) was made using
the mean value of P at each point.

4. Discussion

4.1. Verification and comparison of dominant species in other areas

Among the six selected dominant species, P. tenue had the most
dominant cyanobacterial populations in lakes and reservoirs of Jinan,



Table 3
Levels of principal driving factors.

Level 1 2 3 4 5

WT (°C) 12.00–16.00 16.00–20.00 20.00–24.00 24.00–28.00 28.00–32.00
pH 7.30–7.70 7.70–8.10 8.10–8.50 8.50–8.90 8.90–9.30
TP (mg L−1) 0–0.05 0.05–0.10 0.10–0.15 0.15–0.20 0.20–0.25
NH4-N (mg L−1) 0–0.20 0.20–0.40 0.40–0.60 0.60–0.80 0.80–1.00
COD (mg L−1) 2.30–4.90 4.90–7.50 7.50–10.10 10.10–12.70 12.70–15.30
DO (mg L−1) 2.40–4.09 4.09–5.77 5.77–7.46 7.46–9.14 9.14–10.83
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with a relativelywideniche, and could adapt to awide range of environ-
mental conditions (Li et al., 2017), making it regularly prone to blooms
(Meng et al., 2013). Oscillatoria tenuis and M. aeruginosa are common
bloom algae and can produce harmful algal toxins (Huang et al., 2008;
Bouhaddada et al., 2016), andM. tenuissima andM. glauca are common
bloom algae at higher water temperatures and low turbulence
Fig. 5.Habitat suitability index (HSI) graphs of each principal driving factor. X-axis are factor gr
(f) DO.
conditions (Tian et al., 2014). These algae are also the focus of studies
on cyanobacterial blooms in other regions of China and around the
world (Marshall, 2009; Zhang et al., 2011; Tian et al., 2013;
Bouhaddada et al., 2016; Park et al., 2017; Chen et al., 2018; Duan
et al., 2018). Studies from Asia (Jiang et al., 2017; Liu and Fang, 2017),
North America (Werner et al., 2012; Carmichael and Boyer, 2016),
adient and y-axis are habitat suitability index. (a) WT, (b) pH, (c) TP, (d) NH4-N, (e) COD,



Fig. 6. Probability spatial distribution map of cyanobacterial blooms.
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South America (Lins et al., 2016), and Europe (Funari et al., 2017;
Scherer et al., 2017; Burak et al., 2018) show that cyanobacteria have
distinct physiological characteristics that make them dominant in
algae competition and able to easily form cyanobacterial blooms (Hu,
2011; Xiao et al., 2012). Therefore, the predictive analysis of
cyanobacterial blooms using these algae as dominant species probably
represents the actual conditions of the algal populations in Jinan City.
Thus, our results are representative of field conditions, universal, and
suitable for use in lakes and reservoirs globally with similar dominant
species.

4.2. Rationality analysis of driving factors

The CCA analysis showed that the major water quality physical fac-
tors that drove the dominant cyanobacterial population in Jinan City
wereWT and pH. Cyanobacteria-favoredWT accelerated cyanobacterial
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reproduction (Moller et al., 2014; Sinden and Sinang, 2016; Bertani
et al., 2017),withwater temperature being themost important physical
driving factor for cyanobacterial blooms (Figueredo and Giani, 2009;
Descy et al., 2016;Huet al., 2018). Cyanobacterial growth and reproduc-
tion is dependent on an alkaline environment (Cremona et al., 2018).
Acidic waters have a low pH, which can limit the outbreak of
cyanobacterial blooms (Dantas et al., 2008; Teixeira de Oliveira et al.,
2011). In addition, the driving water quality chemical factors included,
TP, NH4-N, COD, andDO,where TP andNH4-Nwere themain indicators
of eutrophication and essential for algal growth and reproduction
(Becker et al., 2009; Steffen et al., 2017). Appropriate concentrations
of COD and DO promote rapid cyanobacterial growth (Hou et al.,
2004; Zhu et al., 2018). In previous studies, in addition to the above fac-
tors, TN, Turb, N/P, etc. were also considered major environmental
drivers of cyanobacterial blooms (Dantas et al., 2008; Xu et al., 2010).
However, in this study, the temporal and spatial changes in TN and
Turb were not significant, and their driving effect was not evident.
This further led to a small temporal and spatial change in N/P, and
they were excluded as principal driving factors. These results showed
that the size of the study area and temporal and spatial scales of phyto-
plankton samplingwere themajor factors affecting the selection of driv-
ing factors.

4.3. Determination of thresholds for cyanobacteria bloom driving factors

When the P value exceeded 0.75, the principal driving factors were
in their optimum range, and the cyanobacteria proliferated rapidly
(Kovacs et al., 2012; Wood et al., 2017). The greater the P value, the
higher the density of cyanobacteria, and the greater the risk of
cyanobacterial blooms (Leão et al., 2009; Maske et al., 2010). This fur-
ther validated the rationality of the cyanobacterial bloom probability
model proposed in this study, which could therefore effectively inform
themanagement of lakes and reservoirs globally to control the develop-
ment of cyanobacteria.

Regarding WT, Pang et al. (2013) showed that when it ranged from
20 to 28 °C, Microcystis had rapid growth and mortality rates in Taihu
Lake, China. Beaulieu et al. (2013) analyzed data from 1000 lakes across
the United States and concluded that algae were more likely to grow in
warmer water (approximately 25 °C), which was within the range of
WT thresholds obtained in this study. For pH, because cyanobacterial
growth and reproduction depends on the alkalinity of an environment
(Cremona et al., 2018) our pH calculations (5.63–9.38) were adjusted
to the range 7–9.38. Similarly, Burak et al. (2018) conducted studies in
Süloğlu Reservoir, Turkey, and their results showed that the pH for the
cyanobacterial bloom environment ranged from 7.73 to 9.25. Further-
more, Yang et al. (2018a, 2018b) showed that cyanobacteria had a com-
petitive advantage in a pH range of 7–9 indoors.

Total phosphorus and NH4-N are nutritive substances, and previous
studies did not establish threshold ranges. Data analyses conducted by
Dai et al. (2015) and Steffen et al. (2017) in Lake Poyang, China and
Lake Erie, North America, respectively, showed that cyanobacteria
were at a higher density within the TP and NH4-N ranges in this
study. Moreover, according to the indoor cultivation results from Duan
et al. (2018), the cyanobacterial growth rate was also high within this
range, indicating that this was a reasonable threshold range. Similar to
our findings, Yang et al. (2018a, 2018b) showed that COD was the
most important environmental factor affecting the cyanobacterial com-
munities in Dianchi Lake, China, with a range of 9.81–15.0 mg L−1. The
results of Carneiro (2014) from different tributaries of the Rio Verde
Lake watershed in Brazil indicated that during cyanobacterial blooms,
the COD values of most tributaries were approximately 11.0 mg L−1,
within the COD threshold range obtained here. Similar to our results,
Zhu et al. (2018) showed that the DO content was 5.40–8.66 mg L−1

in Lake Erhai, China during the season when cyanobacteria had a high
bio-density. In addition, Park et al. (2018) showed that the DO concen-
tration was mostly at 5.0–8.0 mg L−1 during the high cyanobacterial
bio-density period in Hoedong Reservoir, South Korea. The results
from these global studies have further validated the principal driving
factor thresholds of cyanobacterial blooms stated in this paper, strongly
indicating that our method has great potential to be extrapolated to the
global risk prediction of cyanobacterial blooms.

5. Conclusions

In this study, a cyanobacterial bloom probability model was pro-
posed to calculate the probability of cyanobacterial bloom outbreaks.
Through applications in Jinan City, we found that when the probability
of cyanobacterial blooms exceeded 0.75, cyanobacteria proliferated rap-
idly, which further increased the risk of cyanobacterial blooms. Thresh-
old ranges of the principal driving factors for cyanobacterial blooms in
the study area were WT: 19.5–32.5 °C, pH: 7–9.38, TP:
0.13–0.22 mg L−1, NH4-N: 0.38–0.63 mg L−1, COD: 10.5–17.5 mg/L,
and DO: 4.97–8.28 mg L−1. The results from studies in other regions of
the world further validated the driving factor thresholds mentioned
above and provided evidence that the proposed model could be ex-
tended to other regions of the world.
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