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s u m m a r y

Healthy phytoplankton communities are the basis of healthy water ecosystems, and form the foundation
of many freshwater food webs. Globally many freshwater ecosystems are degraded because of intensive
human activities, so water ecosystem restoration is a burning issue worldwide. Selection of key regions
for phytoplankton-related restoration is crucial for an effective aquatic eco-restoration. This paper pre-
sents a practical method for identification of key regions for phytoplankton-related restoration, using
random forests (RFs) method to cluster sites based on dominance, biodiversity, water chemistry and eco-
logical niche. We sampled phytoplankton for species richness and relative abundance and water quality
in the Huai River basin (HRB), China to determine the phytoplankton communities’ composition and
structure and characterize of their ecological niches. A wider mean niche breadth of a species usually
leads to a greater overlap with the niche of other species. Using these data and water quality indices,
we identified the key regions for phytoplankton-related river restoration activities. Results indicate that
our method for recognition of key regions is effective and practical and its application to the HRB iden-
tified the Northern Plain area as the key region for restoration. This area is severely polluted and contrib-
utes significantly to the HRB phytoplankton communities. Phytoplankton in this region is highly
adaptable to environmental change and therefore will be relatively unharmed by environmental instabil-
ity induced by restoration measures. During restoration, indices of water temperature, total phosphorus
and chemical oxygen demand can be altered with little negative influence on phytoplankton communi-
ties, but measures that increase ammonia–nitrogen concentration would be highly detrimental. These
results will provide valuable information for policy makers and stakeholders in water ecosystem resto-
ration and sustainable basin management in the HRB.

Crown Copyright � 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

The world’s ecosystems (both terrestrial and aquatic) are capital
assets. They can yield numerous vital services, including the produc-
tion of goods, life support processes, and life-fulfilling conditions
when properly managed. Ecosystem services are essential to human
existence and operate on such a grand scale, and in such intricate and
little-explored ways, that most could not be replaced by technology.
Unfortunately, escalating impacts of human activities on ecosys-
tems imperil their delivery. Ecosystems are undergoing rapid degra-
dation and depletion (Daily, 1999; Daily et al., 2000) and are
increasingly threatened by human-induced habitat loss (Kagalou
et al., 2010). With economic development and population increase
over the past decades, large quantities of pollutants have been

discharged into rivers in China. This has resulted in degradation of
water quality and greatly impaired aquatic ecosystems, which, in
turn, has severely hindered the sustainable development of the
economy and society. This is especially true for the Huai River, China.

The Huai River, located between the Yangtze River and the Yel-
low River, forms a geographical divide between northern and
southern of China. The Huai River basin (HRB) is one of the main
grain-producing areas of China. Its population (0.165 billion by
the year 2000) surpasses all other large basins in China
(Zhao et al., 2010). Over the last half century, it has been severely
affected by human activities, especially construction of dams and
weirs and discharge of pollutants. Because of serious flood disas-
ters and flood control requirements in the Huai River, around
11,000 dams and sluices had been built by the year 2000. The num-
ber of such structures on this river accounts for approximately half
of those in China and a quarter of those in the world (Liu et al.,
2011). These structures have brought tremendous economic
benefit through flood control, increased irrigation, and power
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generation in the basin. However, major counterarguments have
been raised for many years regarding their detrimental impacts
on the environment (Wang and Xia, 2010; Zhao et al., 2010). Dams
and sluices usually lead to hydrologic ‘‘fragmentation’’, which
greatly harms aquatic ecosystems of the HRB. Water quality in
more than 83% of rivers cannot reach the national criteria
(GB3838-2002) and the quality in this basin is the worst in the na-
tion’s top seven basins (based on Chinese Environment Bulletin in
2005) (Zhang et al., 2010). The river has a history of disastrous pol-
lution events. One severe water pollution event happened in 1994
because of major floods, made worse by inappropriate operation of
sluices. Large number of fish and other aquatic organisms were
killed, and there was serious damage to ecosystems in regional riv-
ers. Affected waterworks had to stop supplying water for 54 days
and 1.5 million people suffered from a shortage of drinking water.
This caused economic losses of at least US$200 million (Xia et al.,
2011). Long-term mismanagement of dams and sluices for water
use, plus excessive pollution discharge, has resulted in ecosystems
in many middle and lower river reaches that are seriously de-
graded and extremely unstable (Zhao et al., 2008). Consequently
there is a need to re-construct or restore stable, healthy aquatic
ecosystems. The top priority should be given to the organisms that
underpin the food webs of aquatic ecosystems – phytoplankton
communities in the HRB.

In aquatic ecosystems, phytoplankton is the major microbial
biomass. Light energy conversion and related synthesis of carbon
compounds is carried out by three major primary producers –
higher plants (macrophytes), phytoplankton, and photosynthetic
bacteria. Phytoplankton are the main microorganisms involved in

this process (Sigee, 2005). They play a major role in aquatic ecosys-
tems as their biological activity affects the biogeochemical cycles
of a number of macro and micronutrients (carbon, silicon, sulfur,
nitrogen, iron, etc.) (Falkowski, 1994; Falkowski et al., 1998). Phy-
toplankton are also the principal primary producer of freshwater
food webs and mainly depends on light energy and nutrients.
However, too many nutrients often accelerate the growth of phyto-
plankton and an overpopulation of phytoplankton is extremely
harmful to the local aquatic-related economy. For example, toxic
algal blooms worsen water quality and greatly impair local fisher-
ies. The abundance and biomass of phytoplankton should therefore
be controlled within a moderate range. An index of ‘‘dominance’’
(Zhao et al., 2011), which denotes the importance or contribution
of a species can be used to assess community structure and used
to manage aquatic ecosystem health. To control the ‘‘dominance’’
of a species, understanding of the connection between its abun-
dance and its habitat indices, especially indices of water quality
are necessary.

The ecological niche can establish connections between phyto-
plankton species and indices of water pollution. It is one of the
most important concepts in the exploration of biological communi-
ties’ structure and development, biodiversity, association of spe-
cies with a particular environment, conservation planning and
decision making (Pearce and Lindenmayer, 1998; Ferrier, 2002;
Wiley et al., 2003). Hutchinson (1957) formalized the niche as an
n-dimensional hyper volume whose axes are critical physical and
environmental factors determining the existence of a species – this
concept of niche as a function of measurable factors has provided a
foundation for many theoretical and field studies (Smith, 1982).

Fig. 1. Phytoplankton sampling in the HRB (modified from Zhao et al. (2011)), the numbers on the map indicate the sampling sites.

C. Zhao et al. / Journal of Hydrology 420–421 (2012) 292–300 293



Author's personal copy

Studies on ecological niche have mainly focused on niche breadth
and niche overlap (Thompson and Gaston, 1999; Jehle et al., 2000;
Brändle et al., 2002). Ecological niche has been widely applied in
research on habitat selection, species conservation, spatial distri-
bution and temporal dynamics, temporal and spatial niche-parti-
tioning, species delimitation, exotic species invasion and
community succession, etc. (McNyset, 2005; Domínguez-Domín-
guez et al., 2006; Chen et al., 2007; Irfan-Ullah et al., 2007;
Peterson et al., 2007; Raxworthy et al., 2007; Solano and Feria,
2007; Basille et al., 2008; Foulon et al., 2008; Friberg et al., 2008;
Peterson and Nakazawa, 2008; Quero et al., 2008; Thorn et al.,
2009; Waltari and Guralnick, 2009).

The protection or restoration of whole ecosystems often repre-
sents the most effective way to sustain genetic, population, and
species diversity (Vitousek et al., 1997). Understanding the conse-
quences of biodiversity changes on ecosystem functioning is
becoming increasingly critical in view of the profound influence
of human activity on natural ecosystems and the goods and ser-
vices humans receive from them (Vitousek et al., 1997; Daily et
al., 2000; Giller et al., 2004). To achieve restoration of aquatic eco-
systems across a very large area, selection of appropriate key re-
gions or priority areas is essential.

Most studies in aquatic systems have used plants, invertebrates,
fish and birds as indicators (Altaba, 1990; Crandall, 1998; Posadas
and Crisci, 2001; Pérez-Losada et al., 2002; Turpie et al., 2002;
Sánchez-Fernández et al., 2004; Abellán et al., 2005). Few studies
focused on the phytoplankton, and furthermore, few considered
many factors of dominance, biodiversity, water quality and ecolog-
ical niche.

In view of the major role of phytoplankton in aquatic ecosys-
tems, the objective of this paper is to identify the key regions for
future restoration of degenerated phytoplankton communities
resulting from severe water pollution. This study was based on
assessments of dominance, biodiversity and ecological niche along
a gradient of water quality indices.

2. Methodology

2.1. The study area

The Huai River is the sixth largest river in China. It is located be-
tween the Yangtze River and the Yellow River of China (Wang and
Xia, 2010). The area of the Huai River basin (HRB: 30�550–36�360N,
111�550–121�250E) covers 27,000 km2. The HRB lies at China’s tran-
sition between the northern climate and southern climate (Gao
et al., 2010). It is the most densely inhabited river basin and the
main grain-producing area of China. In 2005, the total population
and grain yield accounted for 13.1% and 16.1%, respectively, of

the national total (Xia et al., 2011). The population density sur-
passes all other large basins in China (Zhao et al., 2010).

The HRB can be divided into eight regions: Main Stream (R1),
Hongru River (R2), Shaying River (R3), Guo River (R4), Baohui River
(R5), Yishu River (R6), Along East line of South-North Water Trans-
fer Project (R7), Southern Mountain Area (R8), as shown in Fig. 1.

2.2. Methods

To explore the impacts of water pollution on phytoplankton
communities and therefore identify key regions for ecological res-
toration in the HRB, we sampled phytoplankton as well as water
chemistry at 71 typical sites (Fig. 1). We sampled every day during
a low-water period in the hot wet season (from July 10th to July
20th, 2008). This low-water period is the best for exploration of
relationships between phytoplankton and water quality because
during this period phytoplankton flourish and the impacts of
dam on water quality and water ecosystems are greatly reduced
since most water sluices are kept open.

2.2.1. Water chemistry
We measured in situ indices of water chemistry indices: water

temperature: WT; pH; and dissolved oxygen: DO by using a porta-
ble HACH PC101. Twenty-one additional indices were tested in the
laboratory. Water samples were sent to laboratory within 24 h.
Various instruments were used to analyze the additional indices.
Among these instruments, Spectrophotometer (DR5000) was used
to measure Ammonia nitrogen (NH3–N), total phosphorus (TP), to-
tal nitrogen (TN) and hexavalent chromium; Atomic Absorption
Spectrophotometer (Thermo M6) was used for test of copper
(Cu), zinc (Zn), cadmium (Cd) and lead (Pb); Ion Chromatograph
(DIONEX-600) was employed to measure sulfate, fluoride, chloride
and nitrate; Automatic Flow Injection Analyzer (KALAR SAN++) to
measure cyanide, volatile phenol, anionic detergent. Of the initial
21 water chemistry indices selected for analyses the concentra-
tions of many of them were at or below the limits of detection at
69.0–100% of the sampling sites. Consequently we selected nine
main factors (WT; pH; DO; NH3–N; permanganate index: CODMn;
chemical oxygen demand: CODCr; TP; TN; Fluoride) as the water
chemistry indicators of the Huai River (Table 1).

2.2.2. Phytoplankton sampling and taxa determination
A 1000 mL-capacity organic glass bottle was used to sample

water from 0 to 2 m below the water surface. As quickly as possi-
ble, 1.5% concentration Lugol’s solution was added to the bottle. In
the laboratory, a 24-h sedimentation method was used to concen-
trate the phytoplankton sample to 30 mL. A 0.1 mL sub-sample
was taken from the 30-mL concentrated sample and loaded into
a 0.1-mL plankton counting chamber. Finally, the phytoplankton

Table 1
Selected water chemistry indices in the Huai River basin.

No. Environmental factor Range Mean ± SD Mode

1 Water temperature (WT) 27.3–33.4 29.9 ± 1.34 30.6(8.82%)
2 pH 6.08–8.09 7.33 ± 0.39 7.55(5.63%)
3 Dissolved oxygen (DO) 1.20–11.8 5.76 ± 2.37 7.80(11.1%)
4 Ammonia nitrogen (NH3–N) 0.14–12.4 1.13 ± 2.39 0.27(7.04%)
5 Permanganate index (CODMn) 1.96–18.7 5.58 ± 2.78 4.40(7.04%)
6 Chemical oxygen demand (CODCr) 11.1–54.7 22.6 ± 10.1 13.5(6.45%)
7 Total phosphorus (TP) 0.017–1.742 0.16 ± 0.26 0.03(8.45%)
8 Total nitrogen (TN) 0.32–15.4 2.66 ± 2.97 3.07(4.23%)
9 Fluoride 0.5–0.9 0.65 ± 0.17 0.50(52.1%)

Unit of water temperature (WT) is degrees Celsius, pH has no unit and the rest are all in mg L�1.
The mode value in the table is expressed as ‘‘Mode (percentage of mode number to total number)’’.
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were counted using Utermöhl’s inverted plankton microscope. The
biomass was converted from biovolume assuming a specific grav-
ity of 1.0. To determine individual biovolume, individual size
(length, height and breadth, or diameter) of a species was mea-
sured with the plankton microscope. Average size of at least 50
individuals was used to calculate average biovolume of a species
(SL167-961).

2.2.3. Dominance assessment
Abundance and biomass are fundamental indices for biological

monitoring. The two indices often rank differently, which makes it
hard to objectively assess the dominance or importance of a spe-
cies in a community (Zhao et al., 2011). To overcome this, Zhao
et al. (2011) combined them into one index by using the following
equation:

Importance ¼ x1PCTabundance þx2PCTbiomass ð1Þ

where Importance stands for the dominance of a species; PCTabundance

and PCTbiomass refer to the ratio of the species’ abundance and bio-
mass to the total for the communities, respectively; x1 and x2

are the weightings of abundance and biomass, and let x1 = x2 = 0.5.
The larger the Importance is, the more the species contributes to its

community, and the more important it is in the community.

2.2.4. Biodiversity
We employed the commonly used Shannon Index (H) (Speller-

berg and Fedor, 2003; Shannon and Weaver, 1949):

H ¼ �
Xs

i¼1

ni

N

� �
ln

ni

N

� �h i
ð2Þ

where H stands for the biodiversity; ni refers to the number the ith
species, in [individual L�1]; N is the total number of all species in a
sample, in [individual L�1]; s refers to the species type number in a
sample. When all species are equally abundant, H reaches its peak
value.

2.2.5. Niche breadth and niche overlap
There are many models to calculate niche breadth and overlap

(Levins, 1968; Pianka, 1974; Hurlbert, 1978; Smith, 1982). In this
paper, we employ the widely-used Levins Breadth Model (Levins,
1968; Eq. (3)) and Pianka Overlap Model (Pianka, 1974; Eq. (4))
to get niche breadth and niche overlap, respectively.

Levins0 Breadth Model : Bi ¼ 1=
XR

j¼1

ðPijÞ2 ð3Þ

where Bi is the niche breadth of species i; Pij stands for the ratio of
the number of individuals of species i in resource state j to the total
number of individuals of species i. R refers to the total number of
resource states. Resource states are defined according to national
water quality criteria. They stand for gradients along one available
resource. Resources available includes biochemical oxygen demand
(BOD5), dissolved oxygen (DO), permanganate index (CODMn),
ammoniacal nitrogen (NH3–N), and so on.

Pianka Overlap Model : Oik ¼
XR
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where Oik is the niche overlap of species i on species k; Pij and Pkj are
respectively the ratios of numbers of individuals of species i and
species k in resource state j to the total number of individuals of
species i and k; Oik – Oki. Calculation of niche breadth and niche

overlap was conducted using the software ‘‘Data Processing System
(DPS)’’ (Tang and Feng, 2007).

2.2.6. Random forests (RFs) and statistical methods
There are many methods available for classification of sampling

sites. Dudoit et al. (2002) compared and reviewed these (Mehrian
et al., 2007). Clustering is important for pattern recognition, classi-
fication, model reduction and optimization (Hardin and Rocke,
2004; Shafi et al., 2010). Most clustering algorithms require as in-
put a dissimilarity measure between samples (Shi et al., 2005)
whereas an unsupervised learning method – random forests
(RFs) – does not require this. An RF predictor is an ensemble of
individual classification tree predictors (Breiman, 2001). For each
observation, each individual tree falls into one class and the forest
predicts the class that has the largest number of trees. The user has
to specify the number of randomly selected variables mtry to be
searched through for the best split at each node (Horvath et al.,
2007). Injecting the right kind of randomness makes RFs accurate
classifiers. Using out-of-bag estimation makes concrete the other-
wise theoretical values of strength and correlation. Random inputs
and random features produce good results in classification (Brei-
man, 2001).

In addition, RFs have a number of theoretical advantages (Shi
et al., 2005). First, the clustering results do not change when one
or more covariates are monotonically transformed since the dissim-
ilarity only depends on the feature ranks and one does not need to
worry about symmetrizing skewed covariate distributions. Second,
the random forest dissimilarity weighs the contributions of each
covariate on the dissimilarity in a natural way: the more related
the covariate is to other covariates, the more it will affect the defi-
nition of the random forest dissimilarity. Third, the random forest
dissimilarity does not require the user to specify threshold values
for dichotomizing expressions. It automatically dichotomizes the
expressions in a consistent, data-driven way based on individual
tree predictors. Fourth, the random forest dissimilarity naturally
accommodates missing values.

The research of Horvath et al. (2007) indicates that the results of
a RF analysis are highly robust with respect to the RF parameter
mtry (the number of variables considered at each split). The default
value for the number of random features is the square root of the
number of variables. A low value of mtry is appropriate when most
variables are highly correlated to the outcome. If there is no a priori
knowledge, to choose a high value of mtry is a better choice. Also,
Horvath et al. (2007) found that large values of mtry (5000) leads to
higher prediction accuracy and a lot of trees (30,000) make the
estimate of the importance measure stable.

In this paper, RFs were employed to cluster the 71 sampling
sites, taking as inputs a total of 29 variables (dominance, biodiver-
sity, nine water quality indices, nine niche breadth and nine niche
overlap variables along the water chemistry indices’ gradients).
The sites were regarded as points in two-dimensional multidimen-
sional scaling plots. Then the characteristics of every cluster were
identified, based on which key regions were recognized.

To test whether the differences between clusters were signifi-
cant, a nonparametric test, the Kruskal–Wallis Test, was employed
in our study. This test neither makes assumptions for a distribu-
tion, nor assumes that any particular distribution is being used.
It is often used in tests for multiple independent samples with
different sample sizes. Every RF clustering was accompanied by
a Kruskal–Wallis Test. The clustering result with minimum
asymptotic significance (P-value) was selected as the optimized
outcome.

The RFs clustering and Kruskal–Wallis Test analyses were con-
ducted with the freely available software R (R Development Core
Team, 2011).

1 ‘‘Standard for the investigation of reservoir fishery resources’’ issued by the
Ministry of Water Resources of China.
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3. Results and discussion

3.1. Phytoplankton community structure and representative species
selection

There were, in total, 5 classes and 39 species in the sampled
Huai River phytoplankton communities. Among them were 17 spe-
cies of Chlorophyta; 12 Cyanophyta; 6 Bacillariophyta; 2 Euglenophy-
ta; and 2 Pyrrophyta. Cyanophyta was the overwhelmingly
dominant class in the HRB phytoplankton communities (94.38%
of total abundance); Chlorophyta ranked second but only accounted
for 5.38% of the total abundance; Euglenophyta for 3%, Pyrrophyta,
for 2% and Bacillariophyta, for 0.19%.

Among the Cyanophyta, Aphanizomenon flos-aquae had the
greatest abundance (accounting for 40.00% of the total in the HRB
phytoplankton communities) while Oscillatoria had the greatest
biomass (61.32% of total communities). On the whole, A. flos-aquae
and Oscillatoria made the largest contribution in terms of their
dominance values in the HRB phytoplankton communities (24.27%
and 39.01%, respectively). The 10 species with dominance values
larger than 1% are listed in Table 2. Their dominance values summed
to 92.71%, so they were selected to represent the whole HRB
phytoplankton communities in the study period.

3.2. Ecological niche of the representative species

We computed the ecological niche breadth of the 10 represen-
tative species along the nine main water chemistry indices (Table
3) based on Eq. (3).

Generally, a species with a wider niche breadth has a greater
adaptability while one with a narrower niche breadth is sensitive
to environmental change. The former often has a much greater
chance of survival than the latter under conditions of limited re-
sources; however, the latter is usually more competitive in its local
habitat when resources are abundant because of its higher effi-
ciency in use of resources (Chen et al., 2009).

Among the 10 species, Oscillatoria had the broadest mean
breadth value (3.536), suggesting greater adaptability in a chang-
ing environment. It had the broadest niche breadth along the TP
gradient (5.252) and the narrowest one along TN (2.341). In con-
trast, Anabaena azotica had the narrowest mean niche breadth
(1.889), signifying a poor adaptability to changing environmental
conditions.

The 10 species had broader niche breadths along the WT, TP and
CODCr gradients on average (means: 4.143, 3.465 and 3.368,
respectively). The narrowest breadth on average was along the
NH3–N gradient (mean: 1.965). Data analysis indicated that most
species in the study area favored a habitat with a lower NH3–N
concentration in the range 0.15–0.5 mg L�1. This means that
changes of WT, TP and CODCr will have few negative impacts on
the phytoplankton communities in the HRB; while any small

increase in NH3–N concentration might cause great instability of
the phytoplankton communities.

These results imply that during restoration of phytoplankton
communities in the HRB, water temperature, concentration of TP
and CODCr can be altered, but measures that would increase
NH3–N concentration should be avoided.

Generally, if two species have a large niche overlap, this sug-
gests that they have a similar behavior in utilization of resources,
which might result in strong competition with each others under
some conditions.

Phytoplankton species in the HRB had the largest niche overlap
with each other along the NH3–N axis (mean: 9.034 while breadth
along NH3–N was ranked last. This means the representative species
had the narrowest niche breadth along it but all were concentrated
in a narrow NH3–N gradient, as discussed above. Compared with
niche breadth (Table 3), niche overlap in Table 4 approximates a re-
verse trend, which implies that species in the HRB are coexisting
with each other with little competition for WT, TP, CODCr and DO.

The species with the lowest dominance, Dactylococcopsis acicu-
laris, had the largest overlap value along the NH3–N gradient
(9.4297) and the least overlap along the DO gradient (8.3922).
On the whole, the largest overlap values for most species occurred
along the NH3–N gradient, while more than half of the smallest
overlaps were along the DO gradient.

The overlap values for each species are listed in Table 5. D. acic-
ularis had the largest total overlap with other species. Spirulina ma-
jor had the second largest overlap with others, while A. azotica,
with the smallest mean breadth, had the least total overlap with
other species. According to the research of Jiang et al. (2009), we
concluded that D. acicularis has the greatest similarity in resource
use with the others while A. azotica has the least similarity. Overall,
the total overlap and mean breadth of the phytoplankton species
in the Huai River have the same trend (Total_overlap =
1.13 �Mean_breadth + 3.90, R2 = 0.72, F = 20.64� F0.01 = 5.35) – a
wider mean niche breadth of a species usually leads to a greater
overlap with other species.

3.3. Spatially clustering sites using random forests

To make the estimate of importance measure more stable and
keep a higher prediction accuracy, we chose a large number of
trees (ntree: 30 000) for each random forest fit and used a large
number of random features (mtry: 5000) as recommended by
Horvath et al. (2007). The optimized outcome (P = 0.02 < 0.05 with
the Kruskal–Wallis Test) showed that the 71 sites were grouped
into six clusters with different sizes of 20, 10, 14, 13, 5 and 9 sites,
respectively. The P-value indicated that there were significant dis-
similarities among the six clusters. The optimized clustering re-
sults are shown in Fig. 2.

To facilitate study of the characteristics of every cluster, we di-
vided every factor of dominance, biodiversity, water chemistry,
mean ecological niche breadth and mean ecological niche overlap
into six different grades: highest, higher, middle higher (MH), mid-
dle lower (ML), lower and lowest. Then we analyzed the character-
istics of the six clusters. We found the following:

� Cluster 1 was associated with lower-grade pollution, consisting
of a middle-lower NH3–N concentration, lower concentration of
CODMn, CODCr, TP, TN and fluoride; a lower dominance and a
higher biodiversity; a middle lower mean breadth value and a
middle-higher mean overlap value.
� Cluster 2 had the lowest pollution including the lowest concen-

tration of NH3–N, CODMn, TP, TN and fluoride plus a middle
lower CODCr concentration; the lowest dominance and a lower
biodiversity; a lower mean breadth and a middle lower mean
overlap.

Table 2
Dominance values of representative species in the HRB phytoplankton communities.

Species Dominance value (%)

Oscillatoria 39.01
Aphanizomenon flos-aquae 24.27
Spirulina major 10.72
Anabaena azotica 6.83
Microcystis aeruginosa 2.75
Pinnularia nobilis 2.24
Merismopedia glauca 2.12
Pediastrum simplex 1.99
Anabaena flos-aquae 1.43
Dactylococcopsis acicularis 1.35
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� Cluster 3 had a middle-lower pollution level, with middle-lower
concentrations of TP, TN and fluoride, a lower NH3–N concen-
tration, and the middle concentration of CODMn and CODCr. It
also had a higher dominance but the lowest biodiversity in
addition to the lowest mean breadth and overlap.

� Cluster 4 had a higher pollution level, with higher concentra-
tions of NH3–N, CODMn, CODCr, TP and TN, plus the highest fluo-
ride concentration. Besides, it had a middle higher dominance
and a middle lower biodiversity. Its mean breadth ranked the
highest in the six clusters and its mean overlap was higher.

Table 3
Niche breadth of the 10 representative species along the gradients of the nine water chemistry indices.

Species WT pH DO NH3–N CODMn CODCr TP TN Fluoride Mean Rank

Oscillatoria 4.562 2.490 4.371 2.660 3.019 4.562 5.252 2.341 2.572 3.536 1
Aphanizomenon flos-aquae 4.890 3.009 2.572 1.338 2.846 4.083 3.081 3.730 2.568 3.124 4
Spirulina major 4.845 3.019 3.834 2.530 2.828 3.415 4.310 2.729 3.307 3.424 2
Anabaena azotica 2.000 2.000 2.000 2.000 1.000 2.000 2.000 2.000 2.000 1.889 10
Microcystis aeruginosa 3.769 1.815 1.815 1.000 2.333 3.267 1.815 2.333 2.333 2.276 9
Pinnularia nobilis 4.500 2.571 3.600 2.571 3.000 3.000 3.000 3.000 2.571 3.090 5
Merismopedia glauca 4.741 2.844 2.560 1.488 2.612 3.657 3.122 2.977 2.844 2.983 7
Pediastrum simplex 2.667 1.600 2.667 1.600 1.600 1.600 4.000 2.667 4.000 2.489 8
Anabaena flos-aquae 4.840 2.575 2.200 2.283 2.575 3.903 3.457 2.575 3.270 3.075 6
Dactylococcopsis acicularis 4.613 2.844 2.926 2.179 3.141 4.197 4.613 2.522 3.580 3.402 3

Mean 4.143 2.477 2.854 1.965 2.495 3.368 3.465 2.687 2.905
Rank 1 8 5 9 7 3 2 6 4

WT: water temperature; DO: dissolved oxygen; NH3–N: ammoniacal nitrogen; CODMn: permanganate index; CODCr: chemical oxygen demand; TP: total phosphorus; TN:
total nitrogen.
Unit of WT is degrees Celsius, pH has no unit and the rest are all in mg L�1.

Table 4
Niche overlap of the 10 representative species along the gradients of the nine chemistry indices.

Species WT pH DO NH3–N CODMn CODCr TP TN Fluoride Mean Rank

Oscillatoria 8.5086 8.7613 8.4017 9.2196 8.9804 8.4786 7.9708 9.022 8.4231 8.641 4
Aphanizomenon flos-aquae 8.5302 9.1848 8.319 9.3395 8.1564 8.2687 8.249 8.965 8.7145 8.636 5
Spirulina major 8.3563 8.6672 8.6199 9.3662 9.0509 8.3542 8.6162 8.9929 8.4595 8.720 2
Anabaena azotica 5.2063 9.1596 4.4143 7.4603 6.9076 6.2625 5.5216 8.6585 7.1865 6.753 10
Microcystis aeruginosa 7.4062 6.7036 7.8619 9.2439 7.2509 7.9711 6.8582 6.4978 8.9249 7.635 8
Pinnularia nobilis 6.8815 9.0279 5.1008 8.5123 8.4117 5.7369 5.9614 8.7738 9.0724 7.498 9
Merismopedia glauca 8.4863 9.2665 8.2106 9.357 9.0232 8.4834 7.7827 8.7735 8.871 8.695 3
Pediastrum simplex 6.7342 8.1397 8.1791 8.9925 7.3231 5.8189 8.0262 8.7504 8.4786 7.827 7
Anabaena flos-aquae 8.1681 8.7179 7.9855 9.4174 8.7889 7.621 8.4288 9.2537 9.18 8.618 6
Dactylococcopsis acicularis 8.5941 9.2267 8.3922 9.4297 9.0877 8.6559 8.4913 9.1246 9.1693 8.908 1

Mean 7.687 8.686 7.549 9.034 8.298 7.565 7.591 8.681 8.648
Rank 6 2 9 1 5 8 7 3 4

WT: water temperature; DO: dissolved oxygen; NH3–N: ammoniacal nitrogen; CODMn: permanganate index; CODCr: chemical oxygen demand; TP: total phosphorus; TN:
total nitrogen.
Unit of WT is degrees Celsius, pH has no unit and the rest are all in mg L�1.

Table 5
Mean niche overlaps between the representative species.

Species Oscillatoria Aphanizomenon
flos-aquae

Spirulina
maior

Anabaena
azotica

Microcystis
aeruginosa

Pinnularia
nobilis

Merismopedia
glauca

Pediastrum
simplex

Anabaena
flos-
aquae

Dactylococcopsis
acicularis

Total
with
others

Oscillatoria 1.000 0.866 0.960 0.677 0.748 0.844 0.900 0.820 0.894 0.932 7.641
Aphanizomenon

flos-aquae
0.866 1.000 0.889 0.621 0.923 0.735 0.943 0.810 0.902 0.947 7.636

Spirulina major 0.960 0.889 1.000 0.682 0.753 0.810 0.926 0.846 0.898 0.955 7.720
Anabaena

azotica
0.677 0.621 0.682 1.000 0.463 0.635 0.654 0.616 0.700 0.705 5.753

Microcystis
aeruginosa

0.748 0.923 0.753 0.463 1.000 0.623 0.813 0.648 0.837 0.827 6.635

Pinnularia
nobilis

0.844 0.735 0.810 0.635 0.623 1.000 0.743 0.609 0.723 0.773 6.498

Merismopedia
glauca

0.900 0.943 0.926 0.654 0.813 0.743 1.000 0.825 0.922 0.969 7.695

Pediastrum
simplex

0.820 0.810 0.846 0.616 0.648 0.609 0.825 1.000 0.798 0.856 6.827

Anabaena flos-
aquae

0.894 0.902 0.898 0.700 0.837 0.723 0.922 0.798 1.000 0.943 7.618

Dactylococcopsis
acicularis

0.932 0.947 0.955 0.705 0.827 0.773 0.969 0.856 0.943 1.000 7.908
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� Cluster 5 had the highest pollution level because of the highest
concentration of NH3–N, CODMn, CODCr, TP and TN, and a higher
fluoride concentration. It had the highest dominance and biodi-
versity. Its mean breadth was middle higher and its mean over-
lap was lower.

� Cluster 6 had a middle higher pollution level, composed of mid-
dle higher concentrations of NH3–N, TP, TN and fluoride, plus a
middle lower CODMn and the lowest CODCr concentration. Addi-
tionally, it had a middle lower dominance and a middle higher
biodiversity. Its mean breadth was higher and the mean overlap
ranked the highest in the HRB phytoplankton communities dur-
ing our study period.

The spatial distribution of the six clusters is shown in Fig. 3. The
effect of dams made all clusters disperse throughout the HRB ex-
cept for clusters 4 and 5. Cluster 1 was scattered in the southern
and eastern regions of the HRB; cluster 2 was mainly distributed
along the main stream of the Huai River; most of clusters 3 and
6 were mainly found in the eastern region of the HRB, with a few
sites scattered in the western region; clusters 4 and 5, were uni-
formly concentrated in the central-northern region of the HRB.

The regions of cluster 5 (thick cross in Fig. 3) have been severely
polluted and the concentrations of NH3–N, CODMn, CODCr, TP, TN
were extremely high. Meanwhile, phytoplankton in these regions
made the greatest contributions to the HRB phytoplankton com-
munities due to their highest dominance and biodiversity.

The regions of cluster 4 (thin cross in Fig. 3) were less polluted
compared with those of cluster 5. The biodiversity of phytoplankton
in these regions was low, which resulted in a lower self-purifying
rate in these waters. That in turn makes water quality worse.
The emphasis should be laid on improvement of biodiversity and
pollutant control in these regions.

In summary, regions of clusters 4 and 5 (within the ellipse in
Fig. 3) were severely polluted. Phytoplankton there are highly
important to the HRB phytoplankton communities due to the high

Fig. 2. Clusters by random forests based on dominance, biodiversity, water
chemistry, ecological niche breadth and overlap. The numbers in the figure stand
for the sampling site code, as in Fig. 1. Dim1 and Dim2 stand for the two dimensions
of a point.

Fig. 3. Spatial random forests clustering in the basin: ‘‘MH’’ and ‘‘ML’’ stand for ‘‘middle higher’’ and ‘‘middle lower’’. DEM means digital elevation model.
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dominance and biodiversity in these regions. While ecological res-
toration measures might cause damage to the habitat and the bio-
ta, the relatively high mean breadth values in these regions
indicate that the phytoplankton there have strong adaptability to
environmental change. Ecological restoration focusing on aquatic
environment improvement in the regions of clusters 4 and 5 is,
therefore, feasible, and the importance of the phytoplankton there
means that these are undoubtedly key regions for future phyto-
plankton-related ecological restoration.

Several previous studies on the HRB have also found that the
northern plain regions of the HRB (approximate the ellipse area
in Fig. 3), and especially the Hongru (R2), Shaying (R3) and Guo
(R4) Rivers, have the most severe water pollution (Wang and
Ongley, 2004; Cheng et al., 2005; Tang et al., 2008; Zhang and Shan,
2008; Xia et al., 2011). These regions have a high population and
high levels of industrial activities (e.g. mining of sulfate and chlo-
ride minerals), and runoff from agricultural activities (Zhang
et al., 2011; Zhao et al., 2008). Zhang et al. (2011) studied the
chemistry of these rivers of the HRB, and found that the northern
plain regions in the HRB have high concentrations of ions, with
the spatial patterns and ionic composition reflecting the intensive
human activities in the region. The middle and lower reaches of
most rivers have fragile or even unstable aquatic ecosystems, with
sub-healthy or unhealthy aquatic habitats (Zhao et al., 2008). Our
methods also identified these areas as high-priority sites key sites
for restoration, demonstrating that our methods are effective and
practical.

We aimed to explore the impact of water pollution on phyto-
plankton communities after we had identified water pollution as
the most important factor influencing the quality of phytoplankton
communities. For this purpose, some variables that directly control
phytoplankton species composition such as light, silica and resi-
dence time were not included within the study. This may result
in some uncertainties in results.

The quantity and nature of the required data can limit the effec-
tiveness of methods for identification of key regions in a basin with
severe water pollution. Turpie et al. (2002) devised a method for
prioritizing South African estuaries on the basis of conservation
importance. Estuaries were scored in terms of their size, type and
biogeographical zone, habitats and biota (plants, invertebrates, fish
and birds). This method considered as many factors as possible and
was developed to aid in decision-making regarding the freshwater
requirements of estuaries, and in the development of a sound man-
agement strategy for estuaries. However, too many data require-
ments and uncertainties in estimates of the indices limited its
application in data-scarce areas. Sánchez-Fernández et al., 2004)
identified high-priority areas for conservation using only data on
water beetle presence and distribution. However, they did not con-
sider the impact of habitat factors such as water chemistry and
other factors controlling phytoplankton species compositions.
Filipe et al. (2004) presented a practical way of ranking water-
courses for conservation based on the probability of occurrence
of species and criteria for rarity, abundance, and endemic value.
However, failure to incorporate critical habitat variables with the
proper scale may result in incorrect classifications. Similarly,
when Posadas and Crisci (2001) set priorities in conservation by
using phylogenetic diversity measures, they failed to consider the
influences of habitat factors on aquatic species. Therefore these
methods are not satisfactory for recognizing key regions in ecolog-
ically degenerated area with severe pollution.

In most developing countries and regions, water pollution is the
principle factor hindering the restoration of aquatic ecosystems. At
the same time, collection of detailed data on factors influencing the
growth of aquatic biota is costly. Consequently, such datasets are
usually scarce. In those countries/regions, our methods can be

easily employed to identify key regions for aquatic ecosystem res-
toration by using simple critical impact factors.

In this study, some uncertainties in the conclusions may occur
because of limited data and because the results are based on only
one sampling time. In the process of ecological restoration, regular,
long-term monitoring on aquatic ecosystems will be required.
Long-term monitoring is likely to increase the precision of predic-
tion of the key regions for rehabilitation.

4. Conclusions

To identify the key regions for future phytoplankton related
ecological restoration in the Huai River basin (HRB), China, we
sampled phytoplankton and water chemistry in the HRB. Species
dominance, biodiversity and ecological niches (niche breadth and
niche overlap) at all sampling sites were calculated. Then, the ran-
dom forests (RFs) clustering approach was used to classify all sam-
pling sites into six clusters.

Analyses of the characteristics of the six clusters showed that
two clusters in a severely-polluted region of the Northern Plain
area of the HRB were key candidates for restoration. The phyto-
plankton in these regions were an important component of the
whole HRB biota due to their high dominance and biodiversity.
Their wide niche breadths indicated that they could tolerate the
environmental disruption associated with restoration activities.
During phytoplankton-related restoration in the HRB, water tem-
perature, concentration of total phosphorus and chemical oxygen
demand can be altered with few adverse effects on phytoplankton
communities, while measures increasing Ammonia Nitrogen con-
centration would be highly detrimental.

Acknowledgements

We acknowledge all reviewers and editors for their valuable ad-
vices for this paper. We thank Dr. Anne Colville for her effort in
English language correction. This research was supported by Pro-
ject of the Opening Foundation of the China Institute of Water Re-
sources and Hydropower Research (No. IWHRKF201001), the
Natural Science Foundation of China (No. 40971023), the National
Key Special Project of Sci-tech for water pollution control and
regulation (No. 2009ZX07210-006), the public welfare project of
Ministry of Water Resources, China (No. 200801001) and the
Post-Doc Science Foundation (No. 20100470022), PR China.

We thank all colleagues from the Water Resources Bureau of the
Huai River Committee, from Institute of Geographical Science and
Natural Resources Research, Chinese Academy of Sciences, and
from the East China Normal University for their support and col-
laboration in the field investigation in 2008.

References

Abellán, P., Sánchez-Fernández, D., Velasco, J., Millán, A., 2005. Assessing
conservation priorities for insects: status of water beetles in southeast Spain.
Biol. Conserv. 121 (1), 79–90.

Altaba, C.R., 1990. The last known population of the freshwater mussel Margaritifera
auricularia (Bivalvia, Unionoida) – a conservation priority. Biol. Conserv. 52 (4),
271–286.

Basille, M., Calenge, C., Marboutin, E., Andersen, R., Gaillard, J.-M., 2008. Assessing
habitat selection using multivariate statistics: some refinements of the
ecological-niche factor analysis. Ecol. Model. 211 (1–2), 233–240.

Brändle, M., Prinzing, A., Pfeifer, R., Brandl, R., 2002. Dietary niche breadth for
central European birds: correlations with species-specific traits. Evol. Ecol. Res.
4, 643–657.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.
Chen, P.F., Wiley, E.O., McNyset, K.M., 2007. Ecological niche modeling as a

predictive tool: silver and bighead carps in North America. Biol. Invasions 9 (1),
43–51.

C. Zhao et al. / Journal of Hydrology 420–421 (2012) 292–300 299

Johnson
线条

Johnson
线条



Author's personal copy

Chen, X., Bu, Z.J., Wang, S.Z., Li, H.K., Zhao, H.Y., 2009. Niches of seven bryophyte
species in Hani Peat land of Changbai Mountains. Chinese J. Appl. Ecol. 20 (3),
574–578 (in Chinese).

Cheng, X.S., Jia, L., Cheng, X.F., 2005. Analysis of natural water chemistry
characteristics in the Huai River basin and Shandong Peninsula. Water
Resour. Protect. 21, 15–18 (in Chinese).

Crandall, K.A., 1998. Conservation phylogenetics of Ozark crayfishes: assigning
priorities for aquatic habitat protection. Biol. Conserv. 84 (2), 107–117.

Daily, G.C., 1999. Developing a scientific basis for managing Earth’s life support
systems. Conserv. Ecol. 3 (2), 14, http://www.consecol.org/vol3/iss2/art14/.

Daily, G.C., Soderqvist, T., Arrow, K., et al., 2000. The value of nature and the nature
of value. Science 289, 395–396.

Domínguez-Domínguez, O., Martínez-Meyer, E., Zambrano, L., De León, G.P., 2006.
Using ecological-niche modeling as a conservation tool for freshwater species:
live-bearing fishes in central Mexico. Conserv. Biol. 20 (6), 1730–1739.

Dudoit, S., Fridlyand, J., Speed, T.P., 2002. Comparison of discrimination methods for
the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97,
77–87.

Falkowski, P.G., 1994. The role of phytoplankton photosynthesis in global
biogeochemical cycles. Photosyn. Res. 39, 235–258.

Falkowski, P.G., Barber, R.T., Smetacek, V., 1998. Biogeochemical controls and
feedbacks on ocean primary production. Science 281, 200–206.

Ferrier, S., 2002. Mapping spatial pattern in biodiversity for regional conservation
planning: where to from here? Syst. Biol. 51, 331–363.

Filipe, A.F., Marques, T.A., Tiago, P., Ribeiro, F., Moreira Da Costa, L., Cowx, I.G., Cowx,
I.G., 2004. Selection of priority areas for fish conservation in Guadiana River
basin, Iberian Peninsula. Conserv. Biol. 18 (1), 189–200.

Foulon, E., Not, F., Jalabert, F., Cariou, T., Massana, R., Simon, N., 2008. Ecological
niche partitioning in the picoplanktonic green alga Micromonas pusilla:
evidence from environmental surveys using phylogenetic probes. Environ.
Microbiol. 10 (9), 2433–2443.

Friberg, M., Bergman, M., Kullberg, J., Wahlberg, N., Wiklund, C., 2008. Niche
separation in space and time between two sympatric sister species – a case of
ecological pleiotropy. Evol. Ecol. 22 (1), 1–18.

Gao, C., Gemmer, M., Zeng, X., Liu, B., Su, B., Wen, Y., 2010. Projected streamflow in
the Huaihe River Basin (2010–2100) using artificial neural networks (ANN).
Stoch. Environ. Res. Risk. Assess. 24 (5), 685–697.

Giller, P.S., Hillebrand, H., Berninger, U.G., et al., 2004. Biodiversity effects on
ecosystem functioning: emerging issues and their experimental test in aquatic
environments. Oikos 104 (3), 423–436.

Hardin, J., Rocke, D.M., 2004. Outlier detection in the multiple cluster setting using
the minimum covariance determinant estimator. Comput. Stat. Data Anal. 44
(4), 625–638.

Horvath, S., Shi, T., Shai, R.M., Chen, C., Nelson, S., 2007. Statistical Methods Supplement
and R software tutorial: Gene Filtering with a Random Forest Predictor. <http://
www.genetics.ucla.edu/labs/horvath/RandomForestScreening/>.

Hurlbert, S.H., 1978. The measurement of niche overlap and some relatives. Ecology
59 (1), 67–77.

Hutchinson, G.E., 1957. Concluding remarks. Cold Spring Harb. Symp. 22, 415–427.
Irfan-Ullah, M., Amarnath, G., Murthy, M.S.R., Peterson, A.T., 2007. Mapping the

geographic distribution of Aglaia bourdillonii Gamble (Meliaceae), an endemic
and threatened plant, using ecological niche modeling. Biodivers. Conserv. 16
(6), 1917–1925.

Jehle, R., Bouma, P., Sztatecsny, M., et al., 2000. High aquatic niche overlap in the
newts Triturus cristatus and T. marmoratus (Amphibia, Urodela). Hydrobiologia
437, 149–155.

Jiang, W.X., Fu, X.C., Tang, T., Cai, Q.H., 2009. Community structure and niche of
macroinvertebrates in the Xiangxi River in Hubei, China. Chinese J. Appl.
Environ. Biol. 15 (3), 337–341 (in Chinese).

Kagalou, I.I., Kosiori, A., Leonardos, I.D., 2010. Assessing the zooplankton community
and environmental factors in a Mediterranean wetland. Environ. Monit. Assess.
170 (1–4), 445–455.

Levins, R., 1968. Evolution in Changing Environments: Some Theoretical
Explorations. Princeton University Press, Princeton.

Liu, C.M., Zhao, C.S., Xia, J., Sun, C.L., Wang, R., Liu, T., 2011. An instream ecological
flow method for data-scarce regulated rivers. J. Hydrol. 398, 17–25.

McNyset, K.M., 2005. Use of ecological niche modelling to predict distributions of
freshwater fish species in Kansas. Ecol. Freshwater Fish 14 (3), 243–255.

Mehrian, S.R., Chen, C.D., Shi, T., Horvath, S., Nelson, S.F., Reichardt, J.K.V., Sawyers,
C.L., 2007. Insulin growth factor-binding protein 2 is a Biomarker for PTEN
Status and PI3K/Akt Pathway Activation in Glioblastoma and Prostate Cancer.
Proc. Natl. Acad. Sci. 104 (13), 5563–5568.

Pearce, J., Lindenmayer, D., 1998. Bioclimatic analysis to enhance reintroduction
biology of the endangered helmeted honeyeater (Lichenostomus melanops
cassidix) in southeastern Australia. Restor. Ecol. 6, 238–243.

Pérez-Losada, M., Jara, C.G., Bond-Buckup, G., Crandall, K.A., 2002. Conservation
phylogenetics of Chilean freshwater crabs Aegla (Anomura, Aeglidae): assigning
priorities for aquatic habitat protection. Biol. Conserv. 105 (3), 345–353.

Peterson, A.T., Nakazawa, Y., 2008. Environmental data sets matter in ecological
niche modelling: an example with Solenopsis invicta and Solenopsis richteri.
Global Ecol. Biogeogr. 17 (1), 135–144.

Peterson, A.T., Papes, M., Eaton, M., 2007. Transferability and model evaluation in
ecological niche modeling: a comparison of GARP and Maxent. Ecography 30
(4), 550–560.

Pianka, E.R., 1974. Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. 71,
2141–2145.

Posadas, P.M.D., Crisci, J.V., 2001. Using phylogenetic diversity measures to set
priorities in conservation: an example from southern South America. Conserv.
Biol. 15, 1325–1334.

Quero, J.L., Gomez-Aparicio, L., Zamora, R., Maestre, F.T., 2008. Shifts in the
regeneration niche of an endangered tree (Acer opalus ssp. granatense) during
ontogeny: using an ecological concept for application. Basic Appl. Ecol. 9 (6),
635–644.

R Development Core Team, 2011. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0. <http://www.R-project.org/>.

Raxworthy, C.J., Ingram, C.M., Rabibisoa, N., Pearson, R.G., 2007. Applications of
ecological niche modeling for species delimitation: a review and empirical
evaluation using day geckos (Phelsuma) from Madagascar. Syst. Biol. 56 (6),
907–923.

Sánchez-Fernández, D., Abellán, J., Velasco, J., Millán, A., 2004. Selecting areas to
protect the biodiversity of aquatic ecosystems in a semiarid Mediterranean
region using water beetles. Aquat. Conserv. 14 (5), 465–479.

Shafi, I., Ahmad, J., Shah, S.I., Ikram, A.A., Khan, A.A., Bashir, S., 2010. Validity-guided
fuzzy clustering evaluation for neural network-based time-frequency
reassignment. EURASIP J. Adv. Sig. Pr., 1–14.

Shannon, C.E., Weaver, W., 1949. The Mathematical Theory of Communication. The
University of Illinois Press, Urbana, 117 pp.

Shi, T., Seligson, D., Belldegrun, A.S., Palotie, A., Horvath, S., 2005. Tumor
classification by tissue microarray profiling: random forest clustering applied
to renal cell carcinoma. Mod. Pathol. 18, 547–557.

Sigee, D.C., 2005. Freshwater Microbiology: Biodiversity and Dynamic Interactions
of Microorganisms in the Aquatic Environment. John Wiley & Sons Ltd, England.

Smith, E.P., 1982. Niche Breadth, Resource Availability and Statistical Inference.
SIMS Technical Report No. 8, Biomathematics Group, University of Washington.

Solano, E., Feria, T.P., 2007. Ecological niche modeling and geographic distribution of
the genus Polianthes L. (Agavaceae) in Mexico: using niche modeling to improve
assessments of risk status. Biodivers. Conserv. 16 (6), 1885–1900.

Spellerberg, I.F., Fedor, P.J., 2003. A tribute to Claude Shannon (1916–2001) and a
plea for more rigorous use of species richness, species diversity and the
‘Shannon–Wiener’ Index. Global Ecol. Biogeogr. 12, 177–179.

Tang, Q.Y., Feng, M.G., 2007. DPS Data Processing System: Experimental Design,
Statistical Analysis, and Data Mining. Science Press, Beijing (in Chinese).

Tang, L.H., Zhang, S.C., Lu, X.B., Liu, M.H., 2008. Estimation of agricultural non-point
source pollution loads of the Huai River basin in the East Line of South North
Water Transfer Project. J. Agric. Environ. Sci. 27, 1437–1441 (in Chinese).

Thompson, K., Gaston, K.J., 1999. Range size, dispersal and niche breadth in the
herbaceous flora of central England. Ecology 87, 150–155.

Thorn, J.S., Nijman, V., Smith, D., Nekaris, K.A.I., 2009. Ecological niche modelling as
a technique for assessing threats and setting conservation priorities for Asian
slow lorises (Primates: Nycticebus). Divers. Distrib. 15 (2), 289–298.

Turpie, J.K., Adams, J.B., Joubert, A., et al., 2002. Assessment of the conservation
priority status of South African estuaries for use in management and water
allocation. Water SA 28 (2), 191–206.

Vitousek, P.M., Mooney, H.A., Lubchenco, J., et al., 1997. Human domination of
Earth’s ecosystems. Science 277, 494–499.

Waltari, E., Guralnick, R.P., 2009. Ecological niche modelling of montane mammals
in the Great Basin, North America: examining past and present connectivity of
species across basins and ranges. J. Biogeogr. 36 (1), 148–161.

Wang, C.F., Ongley, E.D., 2004. Transjurisdictional water pollution management: the
Huai River example. Water Int. 29, 290–298.

Wang, G.S., Xia, J., 2010. Improvement of SWAT2000 modelling to assess the impact
of dams and sluices on streamflow in the Huai River basin of China. Hydrol.
Process. 24 (11), 1455–1471.

Wiley, E.O., McNyset, K.M., Peterson, A.T., et al., 2003. Niche modeling and
geographic range predictions in the marine environment using a machine-
learning algorithm. Oceanography 16, 120–127.

Xia, J., Zhang, Y.Y., Zhan, C.S., Ye, A.Z., 2011. Water quality management in China:
the case of the Huai River basin. Int. J. Water Resour. D 27 (1), 167–180.

Zhang, H., Shan, B.Q., 2008. Historical records of heavy metal accumulation in
sediments and the relationship with agricultural intensification in the Yangtze
– the Huai River region, China. Sci. Total Environ. 399, 113–120.

Zhang, Y.Y., Xia, J., Liang, T., Shao, Q.X., 2010. Impact of water projects on river flow
regimes and water quality in Huai River Basin. Water Resour. Manage. 24 (5),
889–908.

Zhang, L., Song, X.F., Xia, J., et al., 2011. Major element chemistry of the Huai River
basin, China. Appl. Geochem. 26 (3), 293–300.

Zhao, C.S., Xia, J., Wang, G.S., et al., 2008. Evaluation and analysis on aquatic ecology
and environmental quality of Huai River basin. Chinese J. Environ. Eng. 12 (2),
1698–1704 (in Chinese).

Zhao, C.S., Sun, C.L., Xia, J., et al., 2010. An impact assessment method of dam/sluice
on instream ecosystem and its application to the Bengbu Sluice of China. Water
Resour. Manage. 24, 4551–4565.

Zhao, C.S., Liu, C.M., Xia, J., et al., 2011. Zoobenthos’ ecological niche clustering for
key regions recognization in ecological restoration of the Huai River, China.
Ecohydrology. Revised.

300 C. Zhao et al. / Journal of Hydrology 420–421 (2012) 292–300

join
Line

join
Pencil

Johnson
高亮




