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A B S T R A C T

Globally, water quality degradation severely threatens the security of water resources. Understanding a river’s
capacity to accommodate pollutants (or water environmental capacity: WEC) can help efficiently protect rivers.
However, the requirement for comprehensive ground-observed hydrological and water quality data in previous
methods makes it difficult to estimate WEC in areas with limited ground observations. This paper proposes a new
framework for WEC estimation in data-scarce areas based on remotely sensed skin water temperature and
limited ground observations. Two new models were developed to calculate the two critical parameters for WEC
estimation: water temperature, and integrated pollutant degradation coefficients (k). Images of ASTER Surface
Kinetic Temperature (AST_08) 90m grid product were used to retrieve water temperatures. The above results
were subsequently used to calculate a river’s capacity to accommodate pollutants, or WEC, in agriculturally
dominated areas. The use of remote sensing techniques enables the methods to be applied over large spatial
scales and to areas with limited ground observations. The application and testing of the framework in four rivers,
including two Chinese rivers (the Huai and the Wei Rivers) and two Australian rivers (the Ovens and the Gwydir
Rivers), suggest that the models performed well to calculate the real-time water temperature and the coefficient
k based on limited ground-observations. Uncertainty analysis on water temperature calculated from remotely
sensed land surface temperature and ground-observed meteorological air temperature suggests that remotely
sensed water temperature had high concurrence with ground observations (RMSE=3.08 °C with R2=0.88),
while the sparse-spatially distributed meteorological stations reduced the accuracy in estimating water tem-
perature (RMSE=4.39 °C with R2= 0.91). We found that the coefficient (k) increased with water temperature
over different seasons in an exponential form but in a logarithmical form with streamflow velocity. Comparison
with previous research and other models with abundant data revealed the practicability and effectiveness of our
models, which can be easily applied to rivers with insufficient ground observations across the globe.

1. Introduction

Rapid socio-economic development in developing countries has re-
sulted in many quality problems in rivers (Levashova et al., 2004; Liu
et al., 2011). Pollution discharged from upstream watersheds and ex-
cessive upstream water abstraction has dramatically changed the hy-
drological regimes and reduce the dilution capacity of a river and may
significantly degrade water quality at downstream reaches (Yoon et al.,
2015). This deterioration of water quality negatively affects socio-

economic development and damages the water ecosystem (Joniak and
Kuczyńska-Kippen, 2010; Rui et al. 2015).

The rapid deterioration of river water quality urgently requires ef-
fective water quality management strategies to reduce the resulting
environmental pressures (Li and Zou, 2015). The most common ap-
proach for water quality protection is the use of water quality stan-
dards, allowing for the selection of protection levels (Han et al., 2010;
Li et al., 2010). Water quality standards, or boundary values for water
quality indicators, are then used to calculate the water environmental
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capacity (WEC), or the capacity of a water body to accommodate a
certain amount of pollutants, and subsequently to reduce the amount of
pollutants discharging into rivers. The WEC has a similar role in water
quality protection with the terms “Assimilative Capacity” (Payandeh
et al., 2015), “Total Maximum Daily Loads” (Bachmann et al., 2003;
Cooter et al., 2010; Kim et al., 2014), etc. (Wang et al., 2015).

Management of the WEC is a key factor to control pollution in rivers
(Keller and Cavallaro, 2008). Based on the estimation of the WEC, the
total allowable amount of pollutants discharged into rivers can be ob-
tained and allocated appropriately among different industries and areas
to ensure that the emission quantities are within the WEC (Chen et al.,
2014). A number of methods has emerged for determining the WEC
with either simple or complicated mathematical/statistical models
(Antonellini et al, 2014; Cuadra and Björklund, 2007; Gong and Jin,
2009; Liu and Borthwick, 2011; Pandey et al, 2011; Zhang et al, 2014b;
Wang et al, 2014; Yang et al., 2015). Water quality models with one,
two and three dimensions have been used widely and significant pro-
gress has been achieved (Imteaz and Asaeda, 2000; Wan et al., 2001;
Park et al., 2005; Testa et al., 2013; Li et al., 2015). In general, the
models have a high demand for ground observations of hydrology and
water quality, as well as for scientific expertise. Several models require
extensive field measurement campaigns and also may rely on expert
panels, which can lack transparency in making recommendations or are
influenced by expert bias (Hughes et al., 2014) that can be very costly
(Alcazar et al., 2008). In addition, in many real-world situations, nei-
ther the financial capacity nor the necessary scientific expertise is
available. Consequently, a lack of effective hydrological and water
quality monitoring creates difficulties in river water quality protection
(Yu et al., 2015). This significantly restricts the wide application of
traditional WEC models in situations with insufficient ground mon-
itoring of hydrological and water quality parameters. Therefore, sig-
nificantly limited data availability appeals less data-intensive or parsi-
monious methods, which can be applied in many different situations
with limited ground observations (Hughes et al., 2014).

In the WEC models, the rate of pollutant degradation in rivers can
be determined by using the integrated degradation coefficient (CAEP,
2003; Dang et al., 2009). The most critical factors influencing the in-
tegrated degradation coefficient are water temperature and river dis-
charge (Chen et al., 2007; Gomes and Wai, 2014). For organic pollu-
tants, water temperature is the principal factor influencing the
integrated degradation coefficient (Wright and Mcdonell, 1979; Brown
and Barnwell, 1987; Li and Liao, 2002; Yang et al., 2014). Therefore,
the integrated degradation coefficient for organic pollutants in rivers
can be estimated via the water-temperature-dependent function. This
greatly facilitates estimation of the WEC in areas with insufficient
ground observations for water quality due to the easy access to water
temperature estimated via meteorological air-temperature or remotely
sensed land surface temperature. This significantly extends the poten-
tial to rapidly estimate the WEC in data limited areas. Remote sensing
techniques are very convenient in obtaining geo-information from the
earth’s surface at multiple temporal-spatial scales (Gassman et al.,
2007; Nesme et al., 2012), e.g., land-use and vegetation (Leuning et al.,
2008; Li et al., 2009; Nesme et al., 2012; Duan et al., 2014), land sur-
face temperature and evapotranspiration (Zhang et al., 2010; Tang
et al, 2010, 2011; Duan et al., 2012, 2014), soil moisture (McVicar et al,
2002), catchment drought and runoff (McVicar et al, 2001; Li et al.,
2009; Zhang et al., 2009). Moreover, the great advantage for remote
sensing in extrapolating land (LST) temperature makes it easy to esti-
mate the WEC in data limited areas. Among all remotely sensed LST, the
ASTER Surface Kinetic Temperature (AST_08) product, generated using
the five Thermal Infrared (TIR) bands (acquired either during the day or
night time), contains LST at 90m spatial resolution for the land areas
and is widely used for studies of volcanism, thermal inertia, surface
energy, and high-resolution mapping of fires (refer to https://lpdaac.
usgs.gov).

Water surface temperature (WST), including skin (or radiant) WST

and bulk WST (Li et al., 2013; Teggi et al., 2014; Zhang et al, 2014a;
Wan et al., 2017), is often derived from the methods for land surface
temperature (LST). LST and WST are the most commonly remotely-
sensed data available for restoration of freshwater ecosystems because
water temperature controls the biogeochemical and hydrological pro-
cesses and plays crucial roles in energy and heat exchanges between
water and atmosphere (Alcântara et al., 2010; Thiemann and Schiller,
2003). But the skin WST (e.g., within the upper 0.1 mm of the water
surface) can merely reflect the thermal radiation status within a very
thin depth under the water surface. Thus it cannot be directly used to
replace the bulk WST (e.g., within 10 cm or 4m below the water sur-
face) (Torgersen et al., 2001) – a key parameter for WEC estimation. In
the river ecosystem the photosynthetic rate of phytoplankton, control-
ling the degeneration rate of organic pollutants and influencing the
magnitude of WEC, often occurs in the upper 4m water layer, e.g., for
Lake Constance around noon (Thiemann and Schiller, 2003). A con-
version between skin and bulk WSTs has to be made to avoid un-
expected uncertainties in the applications (Li et al., 2013). A regional
algorithm for bulk temperature was presented for Lake Constance but
had high data requirement, e.g., data of air temperature from a weather
station within the last three days, which are often hard to get in data-
limited regions, restricted its application in other regions across the
world (Thiemann and Schiller, 2003). Therefore, it is urgently neces-
sary to develop a new algorithm to convert the remotely-sensed skin
WST to bulk WST, or water temperature used for WEC calculation in
ground data-limited regions.

Our primary goal was to set up a WEC framework for rivers with
limited ground observations, based on the advantages of remote sensing
techniques in obtaining data of water surface temperature. Our specific
objectives were:

1. To retrieve water temperature by converting remotely sensed skin
WST to bulk WST in rivers with limited ground observations;

2. To calculate the integrated degradation coefficient (k) for organic
pollutants at any level of temperature; and

3. To estimate the corresponding WEC based on the coefficient (k) for
ground-observation limited areas.

This paper is structured around the three objectives in Methods
(Section 3), Results and Discussion (Section 4), and Conclusion (Section
5). The data sets used are described in Section 2.

2. Study area and materials

2.1. Study area

The Wei River basin, situated between 103.5 and 110.5°E and
33.5–37.5°N, is located in a continental monsoon climatic zone; the
mean temperature ranges from 6 to 14 °C with a mean rainfall of
450–700mm, and the mean pan evaporation ranges from 1000 to
2000mm (Li et al., 2014). In recent decades, the entire basin has en-
countered many serious droughts with long durations and high severity
(Huang et al., 2014). The basin is the primary region for agriculture,
industry and commerce in Northwestern China (Song et al., 2007).
Intensive human activities have resulted in substantial negative impacts
on the Wei River, which are characterized by decreasing annual runoff
and heavy pollution (Zuo et al., 2014). As a result, 69.2% of the water
quality observations exceeded the national water protection standards
(e.g., in 2009) and resulted in serious degradation of ecosystem func-
tion (Wu et al., 2014b). The two principal issues in terms of pollution in
this region are chemical oxygen demand (COD) and ammonia nitrogen
(NH3-N) levels (Zhang et al., 2012), which deserve special attention in
future water-resource protection strategies.

Linjiacun (LJC) and Xianyang (XY) are two important hydrological
and water quality monitoring stations along the river. The water surface
width of this reach ranges from 27 to 500m and the water depth varies
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from 0.25 to 3.9 m varying with reach and season (Feng et al., 2004;
Wu et al., 2014a). In the catchment of the river-section between LJC
and XY (Fig. 1), many important cities and a large agriculture area are
located. Water loss through agricultural activities, industrial waste-
water discharge and domestic sewage (Guo et al., 2013) have seriously
impacted the health of riverine ecosystems and has significantly re-
stricted the sustainable development of the region. To sustain the local
socio-economic development, it is imperative to protect and restore the
degraded water quality.

2.2. Dataset

The mainstream of the Wei River between the two water-quality
monitoring stations (LJC and XY) was selected to study its WEC. There
are 9 sewage outlets, 9 tributaries and 2 water abstraction canals along
the 196.91-km length of this river section (Fig. 1). The remotely sensed
land surface temperatures (Ts) ASTER Surface Kinetic Temperature
(AST_08) 90m grid product from Jan. 2007 through Dec. 2009 were
downloaded from the website (https://lpdaac.usgs.gov). Daily products
with cloud cover were excluded to ensure the accuracy of monthly
averaged values. Ts for water surface (or WST) within a mixing pixel
was calculated using the ESVEP model in Tang and Li (2017) which can
separate the net radiation from each other in a riparian mixing pixel as
it considers the transmission of direct and diffuse shortwave radiation
separately from the transmission of longwave radiation through the
canopy. Taking the separated net radiation as a basis, the temperature
and evapotranspiration of components in the mixing pixel can be se-
parated. Daily Ts values at the pixel encompassing the water quality
stations were selected and averaged as monthly values and subse-
quently used to construct a water temperature model. All monthly Ts
values along the river section from LJC-XY were subsequently inputted
into the model to generate the monthly water temperature (Tw) se-
quences along this river section. Additionally, ground-based air tem-
perature (Ta) data from nearby meteorological stations (Fig. 1) were
downloaded from the website of the China Meteorological Adminis-
tration (CMA) to test the effectiveness of remotely sensed land surface

temperature (Ts). In addition, limited ground-based Tw measurements
from Jan. 2007 to Dec. 2009 at station LJC were collected. Water
quality indicators (COD and NH3-N) and stream flows at the water-
quality monitoring stations LJC and XY, as well as at sewage outlets,
water-use canal and tributaries, were measured from Jan. 2007 to Dec.
2009 by the Yellow River Conservancy Commission of the Ministry of
Water Resources (MWR), China. All relevant data were subjected to
quality control using the quality-control methods of Smirnov et al.
(2000) with which the high-frequency temporal instability in the data
series was eliminated by application of the criteria of triplet stability.

The water quality standard (Cs, in mg l−1) highly affects the WEC in
sections with different water usage. The WEC was determined based on
land use and vegetation cover maps drawn from satellite images, as well
as industrial statistics data. The water usage of the river section be-
tween LJC and XY (Fig. 1) represents the supply of water for both in-
dustrial and agricultural activities. Therefore, the Cs for the river sec-
tion is restricted to 30mg l−1 for COD and 1.5mg l−1 for NH3-N,
according to the national environmental quality criteria for surface
water “GB 3838-2002” (EPAC, 2002). Water with concentrations of
COD and NH3-N lower than the corresponding standard values is fit for
industrial and agricultural use.

3. Methods

An empirical model for retrieval of water temperatures based on
remotely sensed skin water surface temperature is initially presented
for rivers with limited ground observations. With this model, the in-
tegrated degradation coefficient (k) for organic pollutants at any level
of temperature is then calculated. Based on the calculated k, the real-
time water environment capacity (WEC) for rivers with limited ground
observations can be estimated.

3.1. Retrieval of water temperature

The abundantly available satellite products of skin WST (Ts, in K)
bridge the gap to retrieve water temperatures in areas lacking ground

Fig. 1. The Wei River basin and its stations (Partly revised from Zhao et al. (2018)). LJC and XY are two hydrological and water quality monitoring stations on the
mainstream of the Wei River with observations collected to test the methodologies in this study.
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observations. In these areas, the monthly bulk WST (Tw, in °C) can be
derived from remote-sensed skin WST by using the newly-developed
regression equation between monthly Tw and Ts (Eq. (1)). The latter is
the monthly skin WST averaged from the ASTER Surface Kinetic Tem-
perature daily 90m grid product (AST_08) in the present study.

= ∗ +T
T

a T
T

bw

w

s

s (1)

where, T̄wand T̄s are regionally averaged annual bulk WST and skin
WST, e.g., the average annual values in a watershed, which are easier to
access than the daily or monthly values at a point; a and b are coeffi-
cients that need to be calibrated before Tw estimation.

3.2. Calculation of the integrated degradation coefficients

The integrated degradation coefficient (k, in d−1) in a river-section
is often calibrated with the equation = ( )k 86.4 ln C
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(Testa et al.,
2013; Li et al., 2015) where u is the averaged hydrological streamflow
velocity in a river-section (in m s−1) and L is the length of the river
section (in km). Additionally, the adjustment of k can be achieved by
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20 °C for water and Tw stands for any water temperature. Combining the
above two equations, we can derive a new Eq. (2) to estimate the real-
time k at any level of water temperature.
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20 (Wang et al., 2006) or directly
using Eq. (2) based on a few observations in a straight river-section.
Therefore, real-time k for a given water temperature can be calculated
easily with the satellite-retrieved water temperature (Tw) in Eq. (1).

3.3. Estimation of the water environmental capacity (WEC)

The WEC allows for a certain amount of pollutants to be discharged
into water bodies to ensure the concentration of pollutants are below
water quality standards (Han et al., 2010; Chen et al., 2014). The cal-
culated integrated degradation coefficient k in Section 3.2 and the
water quality standard (Cs, in mg l−1) for a river-section were used to
calculate WEC based on Zhao et al. (2018).

= + −
−

W Q q C Q C e( ) s0 0 0
kx

u
1

86.4 (3)

where W is the water environmental capacity, in g s−1; k is the in-
tegrated degradation coefficient; q refers to the pollutant water dis-
charge, in m3 s−1; Q0 is the river discharge through the upstream cross-
sections in the studied river-section, in m3 s−1; C0 is the concentration
of a certain pollutant at the upstream cross-section, in mg l−1; and x1 is
the distance from a sewage outlet or water use canal source to the
upstream cross-section, in km.

Water quality standard (Cs) for the studied river-section can be
calculated considering the requirements of water supply. In general, the
water usage requirement on pollutant concentration depends on re-
gional land use, vegetation cover and the socio-economic development
status in the adjacent terrestrial areas. The former two can be mapped
via satellite images (e.g., Landsat TM 30m grid products), and the latter
is available in regional statistics records (SBS and NBS-SOS, 2007,
2008, 2009). Cs was assigned the minimum value of requirements of all
water usage on a pollutant (nutrient). For additional details, please
refer to Zhao et al. (2018).

Fig. 2. The monthly ASTER surface-temperature Ts in the Wei River Basin, in K.
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4. Results and Discussion

4.1. Retrieval of water temperature with satellite LST products

Daily remotely sensed skin WST (Ts) from the ASTER Surface Kinetic
Temperature 90m grid product (AST_08) in the Wei River Basin from
2007 to 2009 were initially averaged into monthly Ts (Fig. 2). Based on
these data, the monthly Ts values in the Wei River were extracted.

The monthly ASTER surface temperature data at station LJC on the
Wei River were then correlated with the limited historical observations
of water temperature at station LJC from 2007 to 2009, and subse-
quently used to determine the empirical formula between the surface
temperature and the water temperature based on Eq. (1), as shown in
Eq. (4) and Fig. 3 (upper). With this equation, the water temperature
sequence in the river section LJC-XY was generated (Fig. 3 (lower))
which can be used to calculate k in Eq. (2). Water temperature covering
36months (2007–2009) at every pixel along the river section was re-
trieved. Over time, water temperature varied periodically with seasons,
being high from the latter part of spring to summer (orange- and red-
colored areas in Fig. 3 (lower), more than 20 °C) and low during winter
(blue colors indicated areas, less than 10 °C). Spatially, it varies slowly
from upstream (LJC) to downstream (XY) with almost similarly colored
areas despite some small fluctuations (Fig. 3 (lower)). All these water
temperature values can be used for further calculation of the de-
gradation coefficient k with Eq. (2).

⎜ ⎟= ⎛
⎝

− ⎞
⎠

> =T T T
T
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s
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2

(4)

To evaluate uncertainties in water temperature assessments, an al-
ternative data source – air temperature data (Ta) from meteorological
station no. 57016 located near station LJC were analyzed together with
the limited ground-based Tw measurements from Jan. 2007 to Dec.
2009 at station LJC. Using Eq. (1), a second formula to retrieve water
temperature with meteorological air temperature was fitted as per Eq.
(5).
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To analyze the uncertainties of the derived Tw values between dif-
ferent data sources, Eq. (4) was used to calculate the Tw near the hy-
drological station LJC based on the ASTER surface-temperature (Ts).
The results were plotted in Fig. 4 to compare with Tw data derived from
the meteorological air temperature (Ta) data by using Eq. (5).

Tw values generated from meteorological air-temperature data (grey
diamond in Fig. 4) were greater than the Tw observations at station LJC
(RMSE=4.39 °C with R2= 0.91), whereas Tw values derived from the
ASTER surface-temperature (blue circle in Fig. 4) were distributed
evenly along the 1:1 line (RMSE=3.08 °C with R2=0.88). The reason
may be that the sparse distribution of meteorological stations caused
discordance in the geographical position and produced bias from Tw
observations at station LJC. In contrast, the geographical position of
remotely sensed Ts products concurred with that of ground Tw ob-
servations and produced a series of reasonable Tw results. Also, thermal
inertia of air is very different from that of water causing bias in the Tw
generated from Ta which is affected by meteorology more intensively
than the water bodies.

4.2. Calculation of the integrated degradation coefficients

To calibrate a20 and b20 in Eq. (2), observations from a field trial in
2006 were used. The trial was conducted in a straight river-section of
10.35 km between stations LJC and XY (Liu et al., 2007). Based on the
selected observations at 20 °C and using Eq. (2), parameters of a20 and
b20 were calibrated as 1.14 and−0.11 for COD with a RMSE (root mean
square error) of 1.03 d−1, 1.21 and −0.03 for NH3-N with a RMSE of
0.47 d−1. Based on these parameters, two real-time k equations were
obtained:

= ⎛
⎝

⎞
⎠

= =− −k u
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20 1 2w
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Fig. 3. Retrieval of water temperature Tw (in °C) in the river section of LJC-XY.
Upper: Retrieval formula from ASTER Ts to observed Tw with dotted line being
the 1:1 line and _bar representing the average; Lower: Pixel Tw retrieved from
ASTER products (Ts, in K) along the river section. There are 36months in the
three years of 2007 through 2009. Grey dash line indicates the beginning of a
subsequent year.
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Real-time k changes with water temperature over different seasons
and is also influenced by variations in hydrological streamflow velocity
(Fig. 5). The above real-time k equations (Eqs. (6) and (7) subsequently
were used to estimate k in the WEC of the Wei River in the following
sections of this paper.

In both Eqs. (6) and (7), k can be impacted by hydrological
streamflow velocity (u), river length (L) and water temperature (Tw);
but the impact magnitudes of these three factors are unknown. Selec-
tion of the principal factor(s) impacting the k value is of great im-
portance for the operation of water projects. Therefore, relationships
between degradation coefficients and river length (k-L), water tem-
perature (k-Tw) and streamflow velocity (k-u) were studied (Figs. 3 and
4).

Water temperature, streamflow velocities and river lengths in de-
creasing pollutant concentrations, were assumed to be important
sources of uncertainties in k estimations (Liu et al., 2007; Wang et al.,
2012). Thus, the river-section between LJC and XY was studied to de-
monstrate the influences of water temperature and streamflow velocity
on k estimations based on relationships of k-Tw and k-u. Analysis of all
k-related variables showed that water temperature and streamflow
velocity do have the closest relationship with k (Fig. 5). But accumu-
lation of errors in estimating Tw (Eq. (4) from the remotely sensed
ASTER Surface Kinetic Temperature resulted in uncertainties in k esti-
mates (Eqs. (6) and (7) and subsequently lowered the correlation
coefficients of k with water temperature and streamflow velocity
(R2 < 0.70 in Fig. 5). In general for both COD and NH3-N in the section
between LJC and XY, k increased with water temperature in an ex-
ponential form. The value of k for COD was higher than that for NH3-N
based on the same hydrological streamflow velocity regime, with the
correlation coefficient (R) of the former being slightly higher than that
of the latter. However, the relationship between k and streamflow ve-
locity exhibited a logarithmic form, i.e., k increased with streamflow
velocity logarithmically. Specifically, k increased exponentially with
water temperature and logarithmically with streamflow velocity, as
indicated in the research of Zhao et al. (2018). Likewise, results from
Chen et al. (2014) showed that k for both COD and NH3-N increased
with increasing water temperature. Similar to water temperature, k for
COD was higher than that for NH3-N at the same streamflow velocity.

In addition to water temperature and streamflow velocity, river
length was also studied to assess its impact on k, using different lengths

in a straight river section between LJC and XY. Generally, the k values
for both COD and NH3-N decreased with river length. To explore the
minimum river length required for k to maintain nearly constant values
for the two parameters, variations of ks and concentrations of the two
parameters along with river length were plotted (Fig. 6). It shows that k
decreased abruptly in the initial 1/3 of the flow path, while the de-
creasing trend slowed in the final 2/3 of the study section (∼4–10 km).
Accordingly, the concentration of the two parameters decreased rapidly
with the reduction of k and reached relatively stable values after
flowing more than 0.5 km. In other words, a river length of 4 km is
required to attain a stable degradation coefficient which allows the
pollutants (as measured by COD and NH3-N) to sufficiently degenerate.
As such the minimum river length of 4 km is required to maintain a
steady k value in WEC assessments.

Overall, k for COD was higher than that for NH3-N. In the present
study, in July (2007–2009), k for COD was estimated as 0.38–0.83 d−1

and 0.70–1.27 d−1 upstream and downstream from station XY, re-
spectively, and k for NH3-N was estimated as 0.24–0.57 d−1 and
0.47–0.91 d−1 upstream and downstream from station XY, respectively.
Liu et al. (2007) studied the degradation coefficients for both COD and
NH3-N near station XY in July 2006 and showed that the optimized k
for COD was 1.03 d−1 and for NH3-N was 0.67 d−1, which are similar to
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results from the present study. Few differences exist because the var-
iation of water temperature and streamflow velocity. Water tempera-
ture near station XY in July 2006 was 26.03 °C with a streamflow ve-
locity of 0.46m s−1 (Liu et al., 2007), while water temperature in July
2007 was 22.11 °C with a streamflow velocity of 0.97m s−1, which led
to a higher k for COD (1.27 d−1) and the second highest k for NH3-N
(0.91 d−1). An increase in streamflow velocity in July 2007 greater
than two times that in July 2006 contributed significantly to the in-
crease in ks, both for COD and NH3-N. Su (2006) studied the degen-
eration process of COD near station XY using water-quality data from
1992 to 2001, and found that the highest k for COD was 1.43 d−1, close
to the highest value of 1.36 d−1 in Aug. 2007 in our study.

4.3. Estimation of the water environmental capacity (WEC)

Both the WECs for COD and NH3-N were estimated in the Wei River
(Fig. 7). Their temporal variations concurred highly with the hydro-
logical attributes (streamflow velocity and runoff) of the river, as well
as with water temperature. The highest and lowest WECs were similar
in their variations in relation to seasons. Generally, in the wet season
with high streamflow velocity and water temperature (June to Oct.
every year), both of them showed steep increases in WEC values. In the
dry season (Nov. to May following year) the WEC values remained low
with little fluctuation.

To evaluate our results, two models of Zhou et al. (1999) and Dang
et al. (2009) were then adopted to study uncertainties in WEC esti-
mation. Three rivers were selected: one in China, the Huai River, and
two in Australia, the Ovens and the Gwydir Rivers (Hadwen et al.,
2010). Due to the scarce data availability the WECs for only COD in the
Huai River were calculated and compared, and those for only NH3-N in
the two Australian rivers were compared (Fig. 8). Like that in the Zhao
et al. (2018) study, monthly river discharge datasets greater than zero
in the Huai River were selected from 1998 to 2003. The WEC estimation
results were then compared between the Zhou et al. (1999), Dang et al.
(2009) and our models. To further test the performance of our model,
we selected two rivers in Australia, the Ovens and the Gwydir Rivers,
using NH3-N concentrations to compare the three models for their
performance in calculating WEC based on 12 concurrent samplings in
December 2006 (Hadwen et al., 2010).

The results of our model in the Huai River, China (Fig. 8a) were
between those of Zhou et al. (1999) and Dang et al. (2009) but closer to
the latter model. Likewise, the WEC values based on our model in the
two Australian rivers (Fig. 8b) were between those of the Zhou et al.
(1999) and Dang et al. (2009) models; however, the majority of the
WEC values derived from the Dang et al. (2009) model was below zero,
which deviates from standard practice. This illustrates the feasibility of
our model which is practical and more robust than the Dang et al.
(2009) model. This also demonstrates our model’s potential application
in regions with insufficient ground observations. In brief, the three
comparisons in the three rivers revealed that our model is practical in
assessing water environment capacities and shows good potential for
application to rivers with insufficient ground observations.

5. Conclusion

Comprehensive water quality data required to run water environ-
mental capacity (WEC) models have limited their wide application in
areas with limited ground observations. A new framework to estimate
the WEC was presented. In this framework, water temperature was
determined by using ASTER skin WST mapped from satellite images.
The degradation coefficient was calculated with few water quality ob-
servations. The application of the framework in the Wei River suggest
that the real-time k for COD is higher than that for NH3-N, which varied
with water temperature over different seasons and was also influenced
by variations in streamflow velocity. The k value increased ex-
ponentially with increasing water temperature but logarithmically with
increasing streamflow velocity. The minimum river length that assures
a steady k value must be met before calculations can proceed. Modeling
water temperatures calculated from remotely sensed land surface
temperature and from meteorologically observed air temperature are
promising. The accuracy of the former attribute is higher than that of
the latter. The values of the former attribute were distributed evenly
along the 1:1 line and had higher concurrence with ground-observed
values, whereas the values of the latter attribute were much higher than
that of the former, deviating from the ground observed water tem-
perature values. This is attributed to the sparse distribution and coarse
spatial resolution of the meteorological stations. Comparison with
previous research and models which require comprehensive data
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reveals the practicability and effectiveness of our model, which shows
promise for application to rivers with insufficient ground observations.
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