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Inland streamflow estimation is essential in global water supply and environment protection. In data-scarce
areas a highly efficientwayof estimating streamflow is through remote sensingmethods. However, high require-
ment of most previous methods on ground-measured data hinder their wide use in data-scarce areas. Therefore,
this paper presented a new framework for estimation of streamflow inmedium-to-small rivers with few ground
measurements byusinghigh-resolution unmanned aerial vehicle (UAV) imagery. A newVirtual Hydraulic Radius
(VHR) method was proposed to complement AMHG (at-many-stations hydraulic geometry), a method not re-
quiring any ground measurements when global parameters are used (global–AMHG) in large-scaled rivers but
yielding great uncertainties in smaller scaled rivers, thus creating aVHR-AMHGmethod formedium-to-small riv-
ers. The accuracy verification of the proposedmethodwas performed by comparing it to fieldmeasurement data
and the global parameters of the original AMHG (global–AMHG). Results showed that the rootmean square error
calculated from VHR-AMHGwas 32.15 m3/s, while that from global–AMHGwas 305.65 m3/s, indicating that the
VHR-AHRGmethod yields a significantly higher accuracy for streamflow estimation for medium-to-small rivers.
We found that regardless of the size of the river, AMHG is not applicable for rivers having excessively small b
values in the equation w = aQb (low-b rivers). For medium-to-small rivers with b b 0.25, AMHG is not recom-
mended. The accuracy of the original AMHG method is limited by the initial value of the model parameters
and the condition that the congruent discharge (Qc) has to be within the range of observational discharge. The
initial value setting of the model parameters significantly impacts the calculation accuracy. The VHR-AMHG
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method is able to overcome the deficiencies of the original AMHG, i.e. being overly dependent on the initial value
settingwith long-series knowndischarge data. It also eliminates the limitation of the Qc condition, as it achieves a
higher accuracy for rivers in which Qc does not satisfy the condition compared to using global-AMHG on rivers
that actually meet the condition, thus greatly expanding its usage scope. Thus VHR-AMHG method can provide
detailed data on the spatial and temporal distribution of regional and national streamflow for governments
and stakeholders, and offer scientific data support for wisely making water supply polices and sustainably
protecting eco-environment.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Inland rivers are closely connected to human survival, human activ-
ities, and regional ecological environments (Escartin and Aubrey, 1995;
Ruiz et al., 2004; Zhou and Broodbank, 2014). Streamflow (or river dis-
charge) plays an indispensable role in maintaining the stability of the
hydrosphere system and eco-environment. The methods measuring
streamflow are increasingly diverse (Durand et al., 2014; Legleiter
et al., 2017); however, streamflow estimation remains plagued by prob-
lems related to geography, funds, and other factors (Pan et al., 2016).
Traditional measurement is time-consuming and unable to provide a
solution for data-scarce areas with either no survey stations or insuffi-
cient data. In addition, it is difficult to apply such methods to non-
contact dischargemeasurements, such as for environmental disaster re-
sponse and emergency monitoring (Le Coz et al., 2010; Lee et al., 2002).
Therefore, a rapid and accuratemethod for streamflow estimation is ur-
gently needed for data-scarce areas.

Inversion methods of streamflow estimation, with remote-sensing
technology being the most representative method, are products of in-
depth research in thefields of computer science and spatial science dur-
ing recent years. Using these methods, researchers are able to perform
the inversion of discharge under difficult geology and harsh conditions
without gauging the water (Hirpa et al., 2013). There are two main
types of inversion methods: near-surface remote sensing and satellite
remote sensing. Near-surface remote sensing mainly includes stereo vi-
sion—particularly imaging (Li, 2016), Doppler radar and ground pene-
trating radar (Costa et al., 2006; Costa et al., 2000), aircraft–radar–
water surface elevation (LeFavour and Alsdorf, 2005), water-level/
slope/hydraulic method (Jung et al., 2010; Bjerklie et al., 2018), etc.
However, the expensive instruments limit the wide application of
such methods. In contrast, satellite remote-sensing methods have the
advantages of low cost, high speed and convenience, and ease of imple-
mentation. They have been widely used in large rivers and can be ap-
proximately divided into five types: water surface area (satellite–
water surface area), water surface width (satellite–water surface
width), water level (satellite–water level) and hydrological multi-
parameter set (satellite–multiparameter), and coupling of satellite
data and hydrological model (satellite–hydrological model).

The satellite–water surface area method uses ERS-1 radar satellite
images and simultaneous ground measurement data to establish a cor-
relation between water surface area and discharge for the inversion of
streamflow (Smith et al., 1996; Smith et al., 1995; Song et al., 2011).
The satellite–water surface width method uses water surface width in-
formation obtained from satellite images such as QuickBird-2 together
with fitting curves generated from survey stations to invert streamflow
(Pavelsky et al., 2014; Xu et al., 2004). The satellite–water level method
converts the information on the underlying surface water level esti-
mated using TOPEX/Poseidon satellite data into a series of water level
values. It establishes the relationship between the water level values
from satellite data and themeasured discharge from adjacent hydrolog-
ical stations. Thus, the discharge can be estimated using TOPEX/Posei-
don (TP) satellite data (Zhang et al., 2002; Zhang et al., 2004) or by
directly using satellite altimetry data of TP, ERS-2 and ENVISAT, etc., to
estimate discharge for areas with no data (Getirana and Peters-Lidard,
2013; Papa et al., 2010). The satellite–multiparametric method mea-
sures hydrodynamic and hydrological parameters such aswater surface
width, hydraulic gradient, and water level to invert the discharge of
large rivers with widths N 100 m (Biancamaria et al., 2016; Birkinshaw
et al., 2014; Durand et al., 2016; Gosling and Arnell, 2011; Pavelsky
et al., 2014). Alternatively, it calculates water cycle components from
satellite inversions by linking remote sensing and synchronized ground
measurement (Li et al., 2012; Lu et al., 2010). The satellite–hydrological
modelingmethod combines satellite data, surface climate data, and hy-
drological modeling tomeasure the discharge of large rivers (Andreadis
et al., 2007; Vörösmarty et al., 1996).

Among the five methods previously described, most are highly de-
pendent on ground measurement data, whereas the global parameters
in at-many-stations hydraulic geometry (AMHG) is one of McFLI
(Gleason et al., 2016). It calculates the streamflow solely from the vari-
ation in river width, making it among the mainstreammethods widely
used for streamflow estimation via remote sensing (Bonnema et al.,
2016; Durand et al., 2016; Gleason et al., 2014; Gleason et al., 2018).
However, satellite-induced scale problems (Wu and Li, 2009), restricted
itswide application inmediumand small rivers. In otherwords, because
of the limitations of satellite spatial resolution, the accuracy of this
method is relatively high for large rivers (average river width
≥ 500 m) but unstable for medium-to-small rivers (average river
width ≤ 250 m) (Gleason et al., 2014), thus greatly limiting its applica-
tion to medium-to-small rivers lacking hydrological monitoring data.
Therefore, there is an urgent need to explore new methods to enhance
the AMHGmethod and to expand the scope of its application.

The effective management of medium-to-small rivers is of great
significance for improving flood control capacity, optimizing water
ecological environments, driving economic and social development
along rivers, and promoting the harmonious coexistence between
human and nature (Pawłowski et al., 2016; Pawłowski et al., 2015).
However, medium-to-small rivers usually lack surface hydrological
monitoring stations, and without sufficient data, it is difficult for sat-
ellites to accurately measure the width of medium-to-small rivers.
Furthermore, the data acquisition of high-resolution satellites is lim-
ited by factors such as funds, time, government policies, and geogra-
phy, which pose difficulties for the popularization and application in
practical situations and thus considerably limit the application of the
satellite-based AMHG method. Compared to satellite remote sens-
ing, low-altitude unmanned aerial vehicle (UAV) remote sensing
boasts the advantages of high flexibility, convenience, and high
speed and resolution. The pixel size can be controlled by the flight al-
titude, therefore this method is suitable for river sections at various
scales (large, medium, and small). As such, it has become among
the major low-altitude remote-sensing platforms available today
(Colomina and Molina, 2014; Watts et al., 2012). It is widely used
in the monitoring of river morphology, soil erosion, dynamic topog-
raphy (Cho et al., 2015; Lee and Choi, 2015; Neugirg et al., 2016),
ecological parameter acquisition (Vivoni et al., 2014), and disaster
response (Li et al., 2008). UAVs acquire river data at a centimeter res-
olution, and data acquisition can be performed at any time. Upon
combination with the AMHG method, the accuracy of the discharge
estimation of medium-to-small rivers can be substantially improved.



Table 1
DJI Phantom-3-pro's basic parameters (Zhang et al., 2018).

Basic parameters of UAV

UAV product Phantom-3-pro

Camera FC300X
Camera sensor Sony Exmor R CMOS
Max photo resolution 4000 × 3000
Max aperture f/2.8
Focal length 20 mm
Field of view (FOV) 94°
Max flight altitude 500 m
Max flight time 23 min

Table 2
Ground-measured data.

Basin Stations Data

Yellow
River
Basin

LK Discharge (1 measurement, wet season)
CT Discharge (1 measurement, wet season)
ZK Discharge (1 measurement, wet season)
BDK Discharge (1 measurement, wet season)
BDSH Discharge (1 measurement, wet season)

Hai River
Basin

ZGNL Discharge (1 measurement, wet season)
LJB Discharge (1 measurement, wet season)
LCQ Discharge (1 measurement, wet season)

Huai River
Basin

WLT Discharge (19 measurements, 12 measurements in dry
season, 7 measurements in wet season)
River width (19 measurements)
Cross-section (1 measurement)
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The objective of this paper is to present a new framework for estima-
tion of streamflow (or river discharge) in data-scarce areas. We pro-
posed a novel method to calculate medium-to-small streamflow based
on high-resolution UAV remote-sensing images so as to provide prior
knowledge for AMHG when applied to data-scarce medium-to-small
rivers. The accuracy of the novel method was further verified by com-
parison of field-measured data with the global parameters of the origi-
nal method. Possible methods for eliminating the application
limitations of the original AMHGmethod were also explored.

2. Study area

With an area of 8177.21 km2, Jinan (latitude 36.0°–37.5°, east longi-
tude 116.2°–117.7°) is the first pilot city for China project to build cities
with healthywater ecological communities. It is south of TaishanMoun-
tain andwithin the threemajor fluvial systems of the Yellow, Haihe, and
Huai Rivers. The Yellow, Tuhai-Majia, and Xiaoqinghe rivers run
through the city. The climate is cold and dry during winter and hot
and humid during summer. The average annual precipitation is
619.7 mm; however, the annual precipitation significantly varies year-
by-year and is unevenly distributed during the year. Rainfall is mainly
concentrated during the flood season from July to September, with pre-
cipitation during this period accounting for 50% to 70% of the annual
precipitation (Bi et al., 2007). The main source of river runoff is rainfall,
with the scarcity of rainfall during the non-flood season and the contin-
uous usage of water resources often leading to zero discharge, while in-
tense flooding during the flood season results in a sharp increase in
discharge. Both situations pose an unprecedented threat to the sustain-
able development of the local society and economy. Currently, there are
only three hydrological stations in the entire study area. As such, hydro-
logical monitoring of themedium-to-small rivers is insufficient, making
it difficult to implement effectivemeasures to prevent floods in advance
and to manage and/or control losses. In the present study, based on the
control sections of nine typical medium-to-small rivers in Jinan, UAV
flights and ground measurements sampling were performed, and his-
torical discharge data of the hydrological stations were collected.
Ground-measured discharge and cross-section data were used to verify
the reliability of the AMHG and analyze the accuracy of the new
method.

3. Data and methods

3.1. Data

3.1.1. UAV imaging data
To study the accuracy of AMHG when applied to medium-to-small

rivers and explore improvement methods, ten large-scale field surveys
of the entire study area was carried out from 2014 to 2016. The UAV
flew across nine rivers (for one particular river, a total of 11 river seg-
ments in the upper, middle, and lower reaches were covered) and col-
lected a total of 2477 photographs. From 200 to 300 images per
station were taken using a controlled flight method, with the photo-
graph shooting overlap rate set to 90% so as to ensure the accuracy of
the subsequent software-generated data such as stereo image pair,
point cloud, and digital surfacemodel (DSM) datasets, which are gener-
ated in Pix4dMapper Software (Version 2.0.104). The generated DSM
had a spatial resolution of from 2.22 cm (flight altitude: 50 m) to
4.23 cm (flight altitude: 100 m) (Zhang et al., 2018).

The basic parameters of the UAV are shown in Table 1. The flight
control software used was Pix4Dcapture developed by Pix4D S.A.
(https://pix4d.com/).

3.1.2. Ground data
During the flight of the UAV, discharge data was simultaneously

measured on the ground at each station. In addition, historical data (dis-
charge, cross-section) from the hydrological stations were collected. A
total of 27 measurements on ground-measured discharge data and 1
measurement on cross-section datawere acquired, specifically, 15mea-
surements in wet season, 12 measurements in dry season, as shown in
Table 2.

3.2. Methods

AMHGmethodwasfirstly introduced before a newmethod –Virtual
Hydraulic Radius (VHR) method to produce prior knowledge whereby
to estimate initial values for AMHGwas introduced. Secondly, amethod
to estimate AMHGparameterswith initial valueswas presented. Finally,
methods for sensitivity test and error assessment were introduced.

To facilitate quantitatively evaluating accuracy of the AMHG for
medium-to-small streamflow calculation, two scenarios were set as fol-
lows: (1) calculation of streamflow based on parameter provided by
VHRmethod, and (2) calculations based solely on the global parameters
provided by Gleason andWang (2015) without the use of hydrological
data. The technology roadmap for this study is shown in Fig. 2.

3.2.1. AMHG
The AMHG, the core method of this paper, is derived from the tradi-

tional AHG (at-a-station hydraulic geometry). For AHG, there are three
empirical relationships: width–AMHG (Eq. (1)), depth–AMHG
(Eq. (2)), and velocity–AMHG (Eq. (3)) as follows:

w ¼ aQb ð1Þ

d ¼ cQ f ð2Þ

v ¼ kQm ð3Þ

where w is the river width (m); d is the river depth (m); v is the river
flow rate (m/s); Q is the streamflow (m3/s); and a, b, c, f, k, m are the
empirical parameters (Leopold and Maddock, 1953). AMHG demon-
strates that within the three empirical relationships, the parameters a
and b, c and f, and k and m are not completely independent; instead,
they are linked by log-linear correlations along the river (Gleason
et al., 2014).

https://pix4d.com/
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Although in principle any of a river's three AMHG relationships may
be used, we herewith focused on thewidth–AMHG relationship, similar
to that in Gleason and Smith (2014), as unlike river depth or velocity,
river width is straightforward to measure via multiple UAV imaging.

Gleason andWang (2015) give a derivation of AMHG and show that
it arises because individual AHG curves intersect at the same point in
hydraulic space (e.g. the same values of width and discharge). It is the
width-AMHG that enables remote sensing of discharge, which is formu-
lated as:

b ¼ −
1

log Qcð Þ � log að Þ þ 1
log Qcð Þ � log wcð Þ ð4Þ

where 1/logQc and logwc/logQc respectively represent two important
parameters, AMHG slope, AMHG intercept as described by Gleason
and Smith (2014). Note that Eq. (4) are special cases of Eq. (1) when
AMHG is observed, yet they hold simultaneously at all stations of a
river, not just a single station as in Eq. (1). Gleason and Wang (2015)
then posited that wc can be given by the spatial modes of time mean
quantities of width, which is further proved by Shen et al. (2016). How-
ever, the physical hydraulic quantity to which Qc corresponds has yet to
be uncovered, Gleason et al. (2018) took long-termmean of P-ET satel-
lite water balance as priori estimate to characterize Qc. In this study, in-
stead of using satellite-model estimation of discharge, we use VHR
method mentioned in Section 3.2.2 to generate priori estimation of dis-
charge based onUAV imagery, then taken the timemean of discharge as
Qc.

Gleason and Smith (2014) were able to simplify Eq. (1) by replacing
bwith a function of log(a), as provided by Eq. (4). This simplification re-
duces the number of unknown parameters in Eq. (1) from 2n + 1 to n
+1 for any n cross sections in amass conserved reach, asQ is equivalent
in such cross sections andW is easily given by remotely sensed observa-
tions. This simplified system of AHG curves per cross section is then suf-
ficient for unconstrained, and genetic algorithm was introduced to
heuristically optimize unknown parameters in Eq. (1) for solving Q
(Gleason and Hamdan, 2015).

Parameter calibration plays a critical role in the accuracy of the re-
sults of hydrological calculations (Chlumecký et al., 2017). Commonly
used automatic optimization algorithms for model parameters include
the genetic algorithm (GA), simplex algorithm (SM) (Tsoukalas et al.,
2016), and the Rosenbrock Algorithm (Nicolle et al., 2014), with GA
being more recognized than others (Chlumecký et al., 2017). Previous
experiments have shown that it yields better results in parameter cali-
bration (Horton et al., 2017).

Simply stated, GAs are probabilistic search procedures designed to
work on large spaces involving states that can be represented by strings
(Goldberg and Holland, 1988; Iqbal et al., 2018). To solve the target op-
timization problemand to ensure global convergence, GAs also incorpo-
rate elitist selection strategies (De Jong, 1975; Li et al., 2016) using
objective functions to evaluate fitness and retain individuals with better
fitness. This has a major impact in improving the global convergence of
standard GAs and compensates for the deficiency in convergence to
local optimal solutions (Feng et al., 2017; Rudolph, 1994).

In the present study, the root mean square error (RMSE) was set as
the objective function for GAs. Based on the principle of a minimum
RMSE, individuals were selected for crossover and mutation. The
RMSE calculation method is shown in Eq. (5) as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Xi−Yið Þ2
n

s
ð5Þ

In this study, Xi is the simulation value of discharge; Yi is the ground-
measured. A GA was used to obtain the optimized parameters for the
AMHG. Each GA seeks to minimize the difference in discharge between
cross sections in a pairwise permutation (Gleason et al., 2014).
Parameters under the scenario with the lowest RMSE were then used
by the AMHG to estimate the reach-averaged discharge.

3.2.2. Virtual hydraulic radius (VHR) method
In order to produce initial parameter values for AMHG, this section

developed a new VHR method. When historical discharge and cross-
section data are lacking, the adoption of global parameters proposed
by Gleason and Wang (2015) to calculate streamflow is the only viable
alternative. However, the use of global parameters does not always
yield accurate results (Gleason et al., 2014). Therefore, the present
study proposes a novel alternativemethod, the VHRmethod, for the cal-
culation of accurate initial values of parameters for the AMHG, which
can produce priori knowledge for rivers that lack of historical data.

Regarding the lack of data for medium-to-small rivers, the present
study used a UAV to determine the topography above thewater surface
during the low-flow period. Based on the principle of Manning Equa-
tion, the value of R was calculated under the assumption that the actual
water surfacewidthwas the river bottom forming an incomplete virtual
cross-section, and the virtual discharge (Q) was calculated according to
the Manning Equation. Q refers to the virtual discharge calculated from
the incomplete virtual cross-section, not the actual discharge. As long as
a reference station with a complete cross-section was selected in the
study area, the equation for determining the real discharge (Q′) from
Q could be established to provide the initial value for the six parameters
of the AMHG. The minimum and maximum values of Q′ were set as
lowerboundary_Q and upperboundary_Q, respectively. Subsequently, Q′
and the river width measured using the UAV DSM were substituted
into Eq. (1) to obtain a and b. Themedianmethodwas then used to con-
struct the intervals, in which the minimum and maximum values of in-
terval were set as lowerboundary_a and upperboundary_a, while the
minimum and maximum values of interval b were set as
lowerboundary_b and upperboundary_b. The process of deducing the
real discharge (Q′) from Q is described as follows:

First, the Manning Equation is introduced as Eq. (6).

Q ¼ A � v ¼ 1
n
A � R

2
3 � S

1
2
¼ 1

nA � A
P

� �2
3 � S

1
2 ð6Þ

Q 0 ¼ m � Q þ n ð7Þ

where A is the area of the cross-section (m2); V is the cross-sectional
flow rate (m/s); R is the hydraulic radius (m), which is the ratio of the
cross-sectional area A to the wetted perimeter P(m); S is the gradient;
and n is the roughness.

In VHR, thewetted perimeter P and thewater area Awere calculated
based on the assumed river bottom, then the hydraulic radius R at dif-
ferent water levels was calculated using the equation R=A/P. The pro-
cess is shown in Fig. 3a, where the thin red line indicates the assumed
wetted perimeter (VirtualP) and the thick blue line indicates the true
wetted perimeter (RealP). Combined with the Manning Equation
(Eq. (6)), the virtual discharge (Q) and real discharge (Q′) at different
water levels were calculated. Regression analysis was then performed
to determine the correlation between Q and Q′ (Eq. (7), Fig. 3b) to de-
duce the real discharge Q′.where m and n are linear regression coeffi-
cients. Using the discharge Q calculated using the VHR method and
Eq. (7), the Manning-Equation-based discharge with complete cross-
section data or the real discharge Q′ could be obtained. Because of the
scarcity of hydrologicalmonitoring stations alongmedium-to-small riv-
ers, there is usually a lack of cross-section and discharge data for such
rivers. To apply this method to the calculation of discharge at actual
cross-sections of all rivers using the Manning Equation, a reference sta-
tion must be selected to determine the initial values of m and n in
Eq. (7). Considering that river width is an important characteristic
reflecting the discharge size, and that medium-to-small rivers within
the same study area have similar cross-section formation mechanisms,
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a river width ratio was introduced to obtain the coefficients m and n of
other stations, as shown in Eq. (8):

WRatio ¼ W1

Wi
i ¼ 1;…; kð Þ ð8Þ

where WRatio is the river width ratio; W1 is the average river width
(m) at the reference station; Wi is the average river width at the other
stations, where i represents the station number; and k represents the
total number of stations (k is equal to number of rivers we study). By
combining Eqs. (7) and (8), a universal equation for estimating the ac-
tual discharge at each station was obtained (Eq. (9)) as follows:

Q 0 ¼ WRatio � m � Q þ nð Þ ð9Þ

By substituting Q calculated with the VHR method using UAV data
into Eq. (9), the real discharge Q′ at all stations in the study area was
estimated.

In VHR-AMHGmethod, the discharge is basically calculated by using
river width that is extracted frommultiple images, in the case of the in-
convenience to conduct multiple field survey, we put up an alternative
method to generate multiple synthetic river width by once flight.
Based on assumption that streamflow keeps unchanged over short
reaches (∼10 km) with no tributaries or outflows, with negligible evap-
orative losses, and with negligible hyporheic exchange (Gleason and
Smith, 2014). Gleason and Smith's (2014) assumption suggests that
when the water level rise in an upstream cross-section, the magnitude
of discharge variation caused by the water level rise in each down-
stream cross-section should be equal. In this way, after we simulated
the water level rise in an upstream cross-section with a step of
0.01 m, discharge variation (ΔQ) in different downstream cross-
section can be calculated with Eq. (10).

ΔQ ¼ Q
0
it−Q

0
0t ¼ WRatio �m � Qit ¼

WRatio �m � S
1
2 � Δh � ið Þ

5
3 � Wsurfact;t þW

0
it

� �5=3

n � Wsurface;t þW
0
it þ 2 � Δh � i� �2=3 � 25=3

t ¼ 1…crosssectionNumð Þ ð10Þ

where t represents serial number of the cross-section along the reach; i
is the step number of water level rise, Wsurface,t is the width of cross-
section;Wit′ is the width of the river corresponding towater level rising
0.01 ∗ i, which can be cubic spline interpolated by topography above the
water surface. Based on the principle that ΔQ is equal along the reach,
the water level variation in all downstream cross-sections can be simu-
lated with water-level variation in the upstream reference cross-
section, thus, this method can produce multiple synthetic width and
discharge by once UAV flight.

3.2.3. AMHG parameter estimation with initial values
Because the initial value setting of model parameters has a great im-

pact on the accuracy of the AMHG calculation (Gleason et al., 2014), two
scenarios were investigated in the present study: (1) using AMHG pa-
rameters generated from priori knowledge and (2) using the global pa-
rameters provided byGleason andWang (2015), to set the initial AMHG
parameter value ranges (threshold values) of AMHG slope, AMHG inter-
cept, Q, a, and b. The priori knowledge, in this paper, byway ofManning
Equation and Virtual Hydraulic Radius, were used as the initial estimate
for AMHG parameters.

When applying priori knowledge to AMHG, we use
[lowerboundary_slope, upperboundary_slope] as the threshold value of
AMHG slope, which is determined by −1/log(Qc) given a tolerance of
±0.1, which is recommended by Gleason et al. (2014). Also, we use
[lowerboundary_inte, upperboundary_inte] as the threshold value of
AMHG intercept, which is determined by log(wc)/log(Qc) given a toler-
ance of ±0.1. Besides, we use theminimum andmaximum value of dis-
charge in priori knowledge as the threshold value of the discharge Q in
AMHG, with name of [lowerboundary_Q, upperboundary_Q]. Then, func-
tion was fitted between the discharge in priori knowledge and the river
width based on Eq. 1 (w = aQb), the coefficients were calculated as a
and b. The calculated a and b values were used as a basis to construct
a±50% interval (medianmethod), and thus the thresholds is generated
for a and b, which are [lowerboundary_a, upperboundary_a] and
[lowerboundary_b, upperboundary_b].

3.2.4. Sensitivity tests and error assessment
To extend the application of the AMHG from large rivers tomedium-

to-small rivers, it is necessary to re-perform sensitivity analysis of the
parameters (Fig. 4) to determine the key parameters that affect the
AMHGmostly. There are AMHG slope, AMHG intercept, Q, a, b all 5 pa-
rameters inwidth-AMHG, in order to use GA to drive AMHG, the bound-
ary of the parameter will be used as parameter in method. Specifically,
lowerboundary_b, upperboundary_b represent lower boundary and
higher boundary of b; lowerboundary_a, upperboundary_a represent
the lower boundary and higher boundary of a; lowerboundary_Q,
upperboundary_Q represent the lower boundary and higher boundary
of Q; lowerboundary_inte, upperboundary_inte represent the lower
boundary and higher boundary of AMHG intercept;
lowerboundary_slope, upperboundary_slope represent the lower bound-
ary and higher boundary of AMHG slope. The impact of a certain param-
eter on the accuracy (the RMSE) of the AMHG was investigated by
increasing or decreasing the parameter value while keeping the other
parameters constant.

The error assessment of estimation in this paper is not only by using
RMSE (Eq. (5)) but also taking Nash–Sutcliffe efficiency (defined by
Nash and Sutcliffe, 1970) into consideration.

NSE ¼ 1−
PT

t¼1 Qt
o−Qt

m

� �2
PT

t¼1 Qt
o−Q

� �2 ð11Þ

where T is number of discharge observation, Qo
t represent the observa-

tion value of discharge, Q is the average value of observation discharge,
Qm
t represent the estimation value of discharge.

4. Results

Parameter sensitivity analysis was initially used to screen the
key parameters of the AMHG to improve the efficiency of the pa-
rameter calibration. Then initial values of the sensitive parameters
at data-scarce stations were determined based on ground measure-
ment at a reference station. Afterwards, the sensitive parameters
were calibrated to facilitate estimation of streamflow by using
AMHG. Subsequently, the accuracy of the AMHG in the estimation
of the discharge of medium-to-small rivers was analyzed under
two scenarios, i.e. the availability and unavailability of priori
knowledge, was evaluated.

Taking the above-discussed as basis, the VHR-AMHG method was
used to calculate the streamflowofmedium-to-small rivers, and the cal-
culation accuracy of this method was compared to that of the global–
AMHG. The accuracy analysis was performed using Nash-Sutcliffe effi-
ciency coefficient (NSE), RMSE and t-test, the null hypothesis of the t-
test is that the average of estimation discharge is equal to ground-
measured-discharge.

4.1. Parameter sensitivity analysis

To extend the application of the AMHG from large rivers tomedium-
to-small rivers, it is necessary to re-perform sensitivity analysis of the
parameters (Fig. 4) to determine the key parameters that affect the
AMHGmostly. There are AMHG slope, AMHG intercept, Q, a, b all 5 pa-
rameters inwidth-AMHG, in order to use GA to drive AMHG, the bound-
ary of the parameter will be used as parameter in method. Specifically,
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lowerboundary_b, upperboundary_b represent lower boundary and
higher boundary of b; lowerboundary_a, upperboundary_a represent
the lower boundary and higher boundary of a; lowerboundary_Q,
upperboundary_Q represent the lower boundary and higher boundary
of Q; lowerboundary_inte, upperboundary_inte represent the lower
boundary and higher boundary of AMHG intercept;
lowerboundary_slope, upperboundary_slope represent the lower bound-
ary and higher boundary of AMHG slope. In the analysis, the global pa-
rameters were set as the reference and the RMSE was set as the target.
The impact of a certain parameter on the accuracy (or RMSE) of the
AMHG was investigated by increasing or decreasing the parameter
value while keeping the other parameters constant. The percentage
changes in the RMSE caused by the variations in the AMHG parameters
are shown in Fig. 4.

As shown in Fig. 4(a)–(f), lowerboundary_Q, upperboundary_Q,
lowerboundary_a, upperboundary_a, lowerboundary_b, and
upperboundary_b have a large impact on the discharge estimation of
medium-to-small rivers using the AMHG method resulting in N20%
change in the RMSE, while the variation in the other parameters results
in b10% change in the RMSE. Specifically, for upperboundary_Q and
lowerboundary_b, a decrease in the parameter value (−%) significantly
impacts the calculation result. When the parameter value changed
from−10% to−50%, the RMSE rapidly increased,with the RMSE chang-
ing from +11% to +98% with the variation in upperboundary_Q and
from +7% to +13% with the variation in lowerboundary_b (Fig. 4(a)–
(c)). In contrast, the increase in the value of lowerboundary_a (+%)
significantly impacted the calculation result. When the value
of lowerboundary_a changed from +10% to +50%, the RMSE increased
from +9% to +56% (Fig. 4(d)–(f)). For upperboundary_a,
lowerboundary_Q, and upperboundary_b, an increase or decrease in the
parameter value had a great impact on the calculation result. When
the values of upperboundary_a, lowerboundary_Q, and upperboundary_b
separately changed from +10% to +50%, the RMSE increased from
+14% to +60%, +5% to +24%, and +5% to +15%, respectively. When
the values of the three parameters were respectively changed from
−10% to −50%, the RSME increased from +8% to +81%, +5% to
+31%, and +3% to +21%, respectively (Fig. 4(a)–(f)). According to
Gleason et al. (2014), by inputting different discharge information (i.e.
lowerboundary_Q and upperboundary_Q values) for the sensitivity anal-
ysis of the AMHGmethod, it was found that different discharge thresh-
olds (lowerboundary_Q, upperboundary_Q) for large rivers had a large
impact on the results. In addition, it was observed that the thresholds
of a and b (lowerboundary_a, upperboundary_a, lowerboundary_b,
upperboundary_b) affected the accuracy of the estimated discharge,
which is consistentwith the results of this study. Therefore, it can be de-
duced that the key parameters affecting the AMHG calculation results
include the six aforementioned parameters regardless of the size of
the river. As such, further calculations were focused on these
parameters.

4.2. Determination of initial values of the sensitive parameters at data-
scarce stations based on ground measurement at a reference station

Based on the results of the parameter sensitivity analysis, rich histor-
ical data (priori knowledge) should be used to determine the initial
values of the AMHG parameters lowerboundary_Q and
upperboundary_Q, while Eq. (1) should be incorporated to determine
the initial values of the other parameters lowerboundary_a,
upperboundary_a, lowerboundary_b, and upperboundary_b. However,
this is difficult to achieve in medium-to-small rivers where data are in-
sufficient. Therefore, the Manning Equation coupled with ground-
measured cross-section data were used to calculate discharge in areas
that lack of data to act as a priori knowledge, A and P were calculated
from cross-sections, while roughness n and the gradient S were ob-
tained using UAV orthophotographs and the DSM. In particular, the
roughness n required visual interpretation: from high-resolution UAV
images, the vegetation on both river banks, slope protection conditions,
soil type, andwater surfacewidthwere identified and subsequently the
roughness was determined using the roughness table as a reference
(e.g., Sun, 2007); the gradient S was generated by calculating the relief
between two water levels, one 300 m upstream from the cross-section
and the other 300 m downstream. Therefore, the initial values of the
six parameters can be determined using the river widths measured via
UAV imagery.

To ensure the accuracy of parameter calibration after replacing
ground-measured discharge with discharge calculated by the Manning
Equation, an evaluation of the accuracy of the Manning Equation in cal-
culating discharge was first performed using the rich historical dis-
charge data of the WLT section and the cross-section data acquired
from the WLT hydrological stations in the study area (Fig. 5a).

As shown in Fig. 5a, the ground-measured discharge and the esti-
mated discharge from the Manning Equation are basically distributed
along the 1:1 line (thin solid line), but most of the points are above it.
The slope of the fitted linear curve is N1 (dashed line), indicating that
the values estimated by the Manning Equation are slightly lower. The
calculated NSE, RMSE and average relative error were 0.91, 7.08 m3/s
and 11.25%, respectively. The t-test yielded a P value N 0.05, meaning
that although errors existed between the discharge values estimated
by the Manning Equation and the ground-measured discharge values,
the differences were not statistically significant; therefore, the values
estimated using the Manning Equation can be used as historical data
when the latter is absent. The Manning Equation was used to estimate
the full tank discharge of 311.60 m3/s, which was set as the AMHG pa-
rameter upperboundary_Q, while the dry streamflow value 0 was set
as the value for lowerboundary_Q, i.e. [lowerboundary_Q,
upperboundary_Q] = [0, 311.60].

After obtaining the discharge information using the Manning Equa-
tion, the corresponding river width information was extracted based
on the ground-measured cross-sections, and the function was fitted be-
tween the discharge and the river width based on Eq. (1) (Fig. 5b). The
coefficients were calculated as a = 21.102 and b = 0.2455 (Fig. 5b).
However, the aforementioned calculated values were only station-
specific parameters at one cross-section. To obtain the river-specific
AMHG parameters, the calculated a and b values were used as a basis
to construct a±50% interval (medianmethod), and thus the thresholds
for a and b were [lowerboundary_a, upperboundary_a] = [10.551,
31.653] and [lowerboundary_b, upperboundary_b] = [0.1228, 0.3682].
Using the above-determined values of the six parameters
(lowerboundary_Q, upperboundary_Q, lowerboundary_a,
upperboundary_a, lowerboundary_b, upperboundary_b), the optimal
values of a and b could be obtained using the GA, and the discharge
value at the calculation time could be further obtained using the AMHG.

In summary, using theManning Equation and the ground-measured
cross-section data to calculate the discharge results in a high accuracy,
and the calculated values can act as historical data (a priori knowledge)
for medium-to-small rivers that lack such data, so as to provide the
AMHG with the initial values of the six key parameters:
lowerboundary_Q, upperboundary_Q, lowerboundary_a,
upperboundary_a, lowerboundary_b, and upperboundary_b.

4.3. Sensitive parameter calibration

After determining the threshold values of the aforementioned six
key parameters, the optimal the value of a and b were calculated from
Eq. (4) as follows. Given a selected cross section, the search space is de-
fined by Section 3.2.3. The GA was used to determine the optimal value
of a and b, thus minimizing the discharge difference for each section
(Gleason et al., 2014).

To ensure the reliability of the results and achieve a high calculation
speed, the number of iterations of the GA was set as 10 (Gleason et al.,
2014). During the 10 simulations, based on the elitist selection strategy,
the RMSE was used as the error indicator for the elimination of
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individuals with excessively high error and retention of more adaptive
individuals for the next population evolution.

Because population initialization in the GA is random, the parame-
ters satisfying the requirements that the discharge difference in each
section is the smallest may not be generated. With a higher number of
population evolutions, there is a greater possibility for that, i.e. the
RMSE approaches the optimal value as the number of generations in-
creases (Holland, 1992; Karimkashi and Kishk, 2010). Therefore, in the-
ory, it is better to have as many evolutions as possible. However, in
reality, it is necessary to find a balance between the accuracy of the re-
sults and the efficiency of the execution. To determine the point of bal-
ance, the relationship curve between the RMSE and the number of
generations was plotted (Fig. 6).

As shown in Fig. 6, the RMSE became relatively stable after 200 evo-
lutions during each iteration, and an increase in the number of evolu-
tions after 200 had a limited effect on the RMSE reduction. Therefore,
in the subsequent calculations, the number of generations was set as
200 to effectively and accurately determine the AMHG parameters. In
this way, sensitive AMHG parameters for all study rivers were cali-
brated. The results of [a,b] are respectively [13.13,0.29] for WLT,
[34.75,0.13] for BDK, [5.90,0.39] for BDSH, [32.19,0.13] for CT,
[9.03,0.34] for LJB, [52.16,0.15] for LCQ, [92.07,0.13] for LK,[5.28,0.23]
for ZGNL, [18.45,0.19] for ZK. The optimized values of the parameters
varied greatly with rivers.

4.4. Accuracy of streamflow inversion using the AMHGmethod at the refer-
ence station and in all medium-to-small rivers

As discussed in Gleason and Wang (2015), the AMHG leads to suc-
cessful discharge estimation if the congruent discharge (Qc) is within
the range of previously observed discharge. Hence, before calculating
streamflow using the AMHG method, a Qc = 8.31 m3/s calculated
from −1/AMHG slope must fall within the range of [lowerboundary_Q,
upperboundary_Q] (=[0, 311.60]) mentioned in Section 4.1 to ensure
a high accuracy for the discharge estimation.

The GA is prone to premature convergence, i.e. convergence to a
local optimal solution (Leung et al., 1997; Pandey et al., 2014). To ensure
that the solution generated by the GA was the global optimal solution,
10 simulations were performed for each station using GA-driven
AMHG (shown as the thin red line in Fig. 7), and the average value
was used as the discharge estimation result (shown as the thick green
line in Fig. 7). Under Scenario 1, the initial values of the parameters
were determined using a priori knowledge for the subsequent discharge
calculation using the AMHG. To quantitatively evaluate the accuracy of
the AMHG calculations under the two scenarios, the WLT section,
which had abundant ground-measured discharge and cross-section
data, was selected for the experiment. The results are shown in Fig. 7.

As shown in Fig. 7, high and low ground-measured discharge values
(gray circles) occurred as a result of field measurement error, but the
values basically coincidedwith the discharge calculated by theManning
Equation (thick blue line). Compared to the ground measurements, the
Manning Equation could prolong the discharge series; therefore, the
discharge calculated using theManningEquationwasfirst used to verify
the AMHG accuracy. Under Scenario 1, the AMHG-based simulated dis-
charge and that calculated using the Manning Equation share the same
trendline (the thick blue line in Fig. 7), with small errors occurring at
mid-to-high values and large errors occurring at low values. The calcu-
lated NSE and RMSEwere 0.94 and 5.12m3/s, respectively. Based on the
t-test, P = 0.73 N 0.05, implying that there were no statistically signifi-
cant differences between the results calculated using the AMHG and
those calculated using the Manning Equation.

In areas where a priori knowledge is absent, the global parameters
(Gleason et al., 2014) involved under Scenario 2 can be used to form
the global–AMHG method to calculate the streamflow. The results are
shown in Fig. 7 (10 simulation results [the thin red line] and 10 simula-
tion evaluations [the thick black line]). Among the global parameters,
lowerboundary_Qwas calculated assuming aminimum0.5-m/sflow ve-
locity and 0.5-m river depth multiplied by the minimum observed
width, whereas upperboundary_Q was similarly calculated using a 5-
m/s flow velocity and 10-m river depth (Gleason et al., 2014). As a re-
sult, lowerboundary_Q = 9.21 m3/s and upperboundary_Q =
4637.82 m3/s. As the Qc value did not fall between these two values in
the WLT section, the AMHG calculation requirement was not satisfied.

As shown in Fig. 7 and from further analysis of Scenario 2, the NSE
and RMSE of the discharge estimated using the AMHG and theManning
Equation were −201.16 and 313.32 m3/s, respectively, indicating that
the global parameters were not applicable in this section. The estimated
dischargewas significantly higher compared to the discharge calculated
using theManningEquation. Based on the t-test, P=0 b 0.05, indicating
a highly significant difference between the results of the two methods;
therefore, the global parameters could not be applied to this section.

To perform an in-depth evaluation of the error, the results of the
AMHG method under these two scenarios were further verified using
ground-measured data, as shown in Fig. 8.

As shown in Fig. 8, Scenario 1 had an NSE of 0.88, an RMSE of
8.38m3/s, and an average relative error of 15.99% for all data. Therefore,
the AMHG had high accuracy and can be applied. However, it cannot be
usedwhen there is a lack of cross-section data. Scenario 2 had anNSE of
−161.54, an RMSE of 310.23 m3/s, and P = 0.00 b 0.05, meaning that
the calculation accuracy of the global-AMHG in the WLT section was
low. Here we also respectively discussed discharges in dry and wet pe-
riods to evaluate errors: in dry season, scenario 1 had an RMSE of
15.27 m3/s and scenario 1 had an RMSE of 226.04 m3/s; while in wet
season, scenario 1 had an RMSE of 24.25 m3/s and scenario 1 had an
RMSE of 403.82 m3/s, indicating that AMHG perform better in dry
season.

Relatively speaking, because Scenario 1 is highly dependent on his-
torical data, the global–AMHG (scenario 2) is more likely to be used in
medium-to-small rivers where historical data (cross-section and dis-
charge) is scarce. However, global–AMHG has low calculation accuracy,
as shown by the application in theWLT section. To further verify its ca-
pability of discharge inversion for medium-to-small rivers in the study
area, eight representative stations were selected from Table 2 (Stations
LCQ and LK did not meet the Qc requirement, while stations BDSH, LJB,
ZGNL, CT, BDK, and ZK met the requirement) (Fig. 1). The single-time
ground-measured discharge data of these stationswere used for further
error analysis of the global parameters. The analysis results are shown in
Table 3 and Fig. 9.

As shown in Fig. 9 and Table 3, the estimation accuracy for medium-
to-small rivers using the global parameters was poor, with the RMSE
and average absolute discharge error of each station being
332.64 m3/s and 234.37 m3/s, respectively.

In summary, from the calculation results for the medium-to-small
rivers under both Scenarios 1 and 2, the parameters determined from
the discharge calculated using the Manning Equation and the ground-
measured cross-section (which acted as a priori knowledge (discharge
information)) were more reliable than those obtained using the global
parameters. Nonetheless, for medium-to-small rivers in which hydro-
logical data (flow, cross-sections, etc.) is often absent, the use of global
parameters in calculating discharge is more advantageous as it does
not require a priori knowledge. However, the low accuracy of the
global–AMHG method makes its application to data-scarce areas prob-
lematic; therefore, there is an urgent need for new methods to solve
this problem.

4.5. Streamflow calculation using the VHR-AMHG method and its accuracy

The VHR-AMHGmethod proposed in this study effectively incorpo-
rates the advantages of Scenario 1, and can replace the global–AMHG in
estimating the discharge in data-scarce areas. To achieve this purpose,
reasonable initial values must be set for the six most sensitive key pa-
rameters (lowerboundary_Q, upperboundary_Q, lowerboundary_a,



Table 3
Medium-to-small streamflow estimation using the global parameters.

Station Ground-measured
discharge (m3/s)

Global-AMHG
discharge
(m3/s)

Absolute
error
(m3/s)

BDK 5.37 215.31 209.94
BDSH 2.37 5.84 3.47
LK 263.00 956.85 693.85
ZGNL 1.14 132.24 131.10
LJB 3.93 39.51 35.58
LCQ 33.93 485.10 451.18
ZK 0.31 268.23 267.92
CT 2.73 139.30 136.57

Fig. 1. Study area and the representativemonitoring stations: (a)–(d), (f)–(i), and (k) represent
the locations of the representative monitoring stations; and (j) is an aerial photo correspondin
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upperboundary_a, lowerboundary_b, and upperboundary_b) discussed in
Section 4.1 to improve the accuracy of the AMHGmethod. As historical
hydrological data is needed but such data is usually unavailable for
medium-to-small rivers, the proposed solution is as follows: First, the
measured sections of the WLT were categorized into VirtualP and
RealP as shown in Fig. 3(a), then Q1 and Q′ were calculated using
Eq. (6) and the relationship was fitted to a linear equation based on
Eq. (7). The resulting equation was Q′ = 1.65Q + 23.94 (R2 = 0.99,
RMSE = 4.08 m3/s). Second, using associating river width data at the
WLT station with that of the other stations, the river width ratio
(WRatio) was calculated using Eq. (8). Following Eq. (9), the Q and Q′
expressions of all stations (including the reference station WLT) were
calculated as shown in Table 4. Thus, for any river in the study area,
the generated digital surfacemodel (DSM) and point cloud using UAV imagery; (e) shows
g to k via UAV.



Fig. 3. VHR method and the Q-Q′ relationship curve. (a) VHR diagram, in which the y axis is the relative elevation with the water surface as a reference; (b) scatter plot of the virtual
discharge (Q) and real discharge (Q′) both calculated from the Manning Equation at different water levels according to VirtualP and RealP in panel a. A strong linear relationship exists
between Q and Q′.

Fig. 2. Technology roadmap designed to verify AMHG.
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Fig. 4. Sensitivity analysis of parameters. Each subgraph represents the percentage change in the RMSE caused by the variation in each AMHG parameter as follows: (a)−50%, (b)−20%,
(c) −10%, (d) 10%, (e) 20%, and (f) 50%. upperboundary_b, lowerboundary_b, upperboundary_a, lowerboundary_a, upperboundary_Q, lowerboundary_Q, upperboundary_inte,
lowerboundary_inte, lowerboundary_slope and upperboundary_slope represent the AMHG parameters.
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the real discharge could be obtained using theWRatio correction based
on the Q and Q′ expressions fitted using the data of the WLT station.
Eventually, the goal of generating the initial values for the AMHG pa-
rameters without using any historical hydrological data (discharge
and cross-sections) was achieved.

In practice, at each station in the study area (Table 2), the initial
values of the six key parameters were determined with the VHR-
estimated discharge data. With these limited values, AMHG was then
used to calculate streamflow at each station. It must be noted that the
VHR-estimated discharges have biases due to the unknown of actual
cross-sections and can solely be used to calculate AMHG-parameter ini-
tial values. The biases were eliminated in the AMHG-calculated dis-
charges since the parameters with the initial values were further
optimized by using the GA, and the discharge data were generated
from the AMHG calculations. The initial values of the six parameters of
each station are shown in Table 5.



Fig. 5. Relationships between the discharge estimated by theManning Equation and (a) ground-measured discharge and (b) UAV-measured river width. The thin solid line represents the
1:1 line, while the dotted line represents the trend line.
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Before using the VHR-AMHG method to calculate the discharge, Qc

must fall within the [lowerboundary_Q, upperboundary_Q] interval of
the VHR. Results indicated that nine rivers did not satisfy this condition
(Fig. 10). Under such circumstances, to evaluate the accuracy of the
VHR-AMHG, the six key parameters generated using the VHR and the
global parameters were, respectively, input into the AMHG for calcula-
tion and compared to the ground-measured values as shown in Fig. 9.

As shown in Fig. 9, the VHR-AMHG (Red) was more suitable for the
estimation of medium-to-small streamflow. The RMSE between the es-
timation and ground measurement (dark blue) was 32.15 m3/s, while
the average error was 24.06m3/s. However, the RMSE between the dis-
charge estimated using global–AMHG (gray dotted line) and the ground
measurement was 301.80 m3/s, while the average error was
220.33 m3/s. Moreover, the results at each station were unstable com-
pared to the ground measurement values (dark blue). In conclusion,
the VHR-AMHG method (Eqs. (7)–(9)) proposed in the present study
is suitable for discharge calculation, as it generate parameters that can
effectively replace the global parameters for medium-to-small rivers
Fig. 6.Variation in the RMSE during the evolutionary process of theGA. The red box represents th
references to color in this figure legend, the reader is referred to the web version of this article
with scarce data when Qc does not satisfy the requirement. Although
uncertainties still exist in the VHR-AMHG results, a significant enhance-
ment in calculation accuracy was still achieved.

5. Discussion

5.1. Calculation of discharge using the Manning Equation

For medium-to-small rivers with scarce data, the discharge calcu-
lated using the Manning Equation provides the initial values for the
AMHG parameters. TheManning Equation has been widely used in dis-
charge calculations (Vatankhah et al., 2015). It relies mainly on param-
eters such as water depth (or water level), water surface width (or
water area), water surface velocity, and water surface gradient (Song
et al., 2011). LeFavour and Alsdorf (2005) estimated the streamflow of
three locations on the Amazon River based on the Manning Equation,
and found that the error was within 8% compared to the measured
data. Voinov et al. (1999) used the Manning Equation in a landscape
emutation point, afterwhich the RMSE became relatively stable. (For interpretation of the
.)



Fig. 7.Medium-to-small river discharge calculated using the AMHG under two scenarios. Scenario 1 (S1) represents the AMHG-estimated discharge driven by theManning Equation and
ground-measured cross-section parameters. Scenario 2 (S2) represents the AMHG-estimated discharge driven by the global parameters by Gleason et al. (2014). The relative water level
was measured based on the water surface when the UAV flew.
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ecologicalmodel to calculatewater flux in southern Florida;Westerberg
and Hagberg (2018) applied the Manning Equation to obtain a conser-
vative estimate of the maximum discharge in the bedrock-controlled
upper part of the Engaruka River; and Pan et al. (2016) established
river stage-discharge rating curves in the Illinois River through the com-
bined use of the Manning Equation and remote-sensing data.

From the present study, it was found that the discharge values esti-
mated using the Manning Equation were slightly less than the ground
measurements. This is consistent with results obtained by other studies.
There are two main reasons for this phenomenon: (1) The roughness
value has an important impact on the estimation. In rivers with gravel
riverbeds, the roughness decreases as the water level increases, which
explains why estimations based on the Manning Equation were lower
(Lane, 2005; Dingman, 2009). In sand-bed reaches, the correlation be-
tween roughness and discharge is significantly positive; however, the
correlation is significantly negative for gravel-bed pool-riffle reaches
and small cobble/boulder cascade reaches (Ferguson, 2010). (2) The
gradient and hydraulic radius indices have a significant influence on
the results. When the Manning Equation is applied to natural rivers,
the index of gradient S should be 0.33 instead of 0.5 (the S index is 0.5
in Eq. (6)) (Bjerklie et al., 2005); when applied to gravel-bed rivers
and mountain streams, the index of the hydraulic radius (R in Eq. (6))
should be N0.66, and the index of the gradient S should also be within
the interval [0.25,0.50] (López et al., 2007). The aforementioned studies
have shown that the Manning Equation provides smaller estimated
values of discharge when applied to natural rivers, which is consistent
with the results of the present study. However, the results of the t-test
indicated that the differences between the ground-measured discharge
and discharge values estimated using the Manning Equation were sta-
tistically insignificant. Hence, it is feasible to use the Manning Equation
to approximately estimate the initial values of the AMHG parameters.

5.2. GA parameter calibration

In the present study, the RMSEwas used as the objective function for
the calibration of the AMHG parameters with the GA. In GAs, the se-
lected objective function usually has an important influence on calibra-
tion (Li et al., 2017; Srinivas and Patnaik, 1994). The selection of the
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objective function directly affects the convergence speed of the GA and
determines whether the optimal solution can be achieved, as a GA does
not utilize external information in the evolutionary search and is solely
dependent on the objective function to perform the search based on the
fitness of each individual in the population (Fei et al., 2017; Fonseca and
Fleming, 1993). Time complexity is often used to describe an
algorithm's use of computational resources. As complex objective func-
tions increase the time complexity of GAs, researchers often use simple
objective functions in the selection process of a GA algorithm to reduce
time complexity (Fei et al., 2017; Konak et al., 2006; Nopiah et al., 2010).
For this reason, the simple RMSE was used as the objective function in
the present study. It is an indicator commonly used in genetic algo-
rithms (Herman et al., 2018; Moriasi et al., 2007). For instance,
Chlumecký et al. (2017) optimized the SAC-SMA model parameters
using RMSE; Chadalawada et al. (2016) presented the dynamics of the
urban rainfall-runoff process using RMSE and GAs (Chadalawada et al.,
2016). Dhamge et al. (2012) used RMSE andGAs to calibrate parameters
for artificial neural networks to estimate runoff. For complex hydrolog-
ical models, multiple indicators such as NSE are often considered
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(Herman et al., 2018). In the present study, good results were achieved
when both NSE and RMSE were used in accuracy evaluation.
5.3. Optimization of the calculation accuracy of the AMHG

The present study showed that the global–AMHGmethod is not sta-
ble for estimating the discharge of medium-to-small rivers, which is
consistent with the results of other studies. In a study on the theoretical
basis of AMHG, Gleason and Wang (2015) asserted that in the estima-
tion of discharge using AMHG, realistic minimum and maximum dis-
charge constraints for the specific study rivers should be considered.
Durand et al. (2016) compared AMHG and other commonly used satel-
lite estimationmethods and found that calculations using the global pa-
rameters of AMHG performed much more poorly.

From the perspective of the initial value setting of parameters, as
Gleason's global parameters were developed based on large rivers (av-
erage river width of 629m) (Gleason et al., 2014), they possess a certain
degree of universality but are not applicable to all rivers. As the data in
LJB LCQ ZK CT WLT

HG discharge VHR-AMHG discharge

ed discharge for medium-to-small rivers.



Table 4
VHR expressions of all the rivers in the study area.

Station Expression

BDSH Q′ = 0.93 ∗ Q + 13.50
BDK Q′ = 2.74 ∗ Q + 39.93
CT Q′ = 2.06 ∗ Q + 29.93
LCQ Q′ = 3.32 ∗ Q + 48.30
LJB Q′ = 1.90 ∗ Q + 27.67
LK Q′ = 8.24 ∗ Q + 119.99
WLT Q′ = 1.65 ∗ Q + 23.95
ZK Q′ = 2.22 ∗ Q + 32.35
ZGNL Q′ = 0.92 ∗ Q + 13.33
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the present studywere acquired frommedium-to-small rivers (average
river width of 69 m), the parameters could not be directly used.

Considering the limitations of the AMHG, when applied to large riv-
ers, the calculation results of low-b rivers (i.e. riverswith a lower b value
derived from Eq. (1) based on discharge and river width) are not satis-
factory. As the b value is related to the shape of the river channel
(Gleason et al., 2014), there is a theoretical difference in the definition
of low-b rivers for large rivers and formedium-to-small rivers. To inves-
tigate if the AMHG is inapplicable tomedium-to-small rivers with a low
b value, the difference between the threshold value of b between
medium-to-small rivers and large rivers was analyzed. The b values of
the stations in the study area are shown in Table 6.
Table 5
VHG-generated parameters at each station.

Station lowerboundary_Q upperboundary_Q lowerboundary_

BDSH 13.50 36.63 0.26
BDK 39.99 103.29 31.31
CT 29.99 216.00 25.57
LCQ 48.37 838.86 57.10
LJB 27.72 94.35 11.25
LK 123.62 612.18 106.53
WLT 23.96 316.91 9.07
ZK 32.42 309.55 14.84
ZGNL 13.34 22.40 6.40

Fig. 10. Calculation errors under different parameter conditions, categorized
According to Table 6, large absolute errors occurred during the esti-
mation of the discharge of low-b rivers using AMHG. Gleason et al.
(2014) reported that the application of AMHG to low-b (b b 0.1) rivers
produced unsatisfactory results. Based on the calculations of the present
study, the error significantly increasedwhen b b 0.25; therefore, the low
threshold value of b formedium-to-small rivers could be set as 0.25. Be-
cause of the different scales of the rivers studied, the conclusions arrived
in the present study were similar but not entirely identical to those of
Gleason et al. (2014). In short, regardless of the scale of the river, the
low threshold b value is among the key factors that constrains the use
of AMHG in calculating streamflow.

AMHG leads to successful discharge estimation if congruent dis-

charge (Qc ¼ −
Δ loga
Δb

) is within the range of observed discharge

(Qmin b Qc b Qmax) (Barber and Gleason, 2018). This is consistent with
the calculation result achieved for the WLT section in the present
study. However, in subsequent calculations, theuse of VHR for the initial
value setting of the parameters resulted in a higher accuracy than the
use of global parameters, given that the Qc value did not meet the
requirement.

To fully explore the influence of the initial parameter value setting
and the fulfilment/non-fulfilment of the Qc requirement on the AMHG
calculation result, the discharge of all rivers in the study area was calcu-
lated using two parameter value setting methods, i.e. the VHR and
global parameters. The calculation errors of the two methods under
a upperboundary_a lowerboundary_b upperboundary_b

0.77 0.63 1.90
93.92 0.03 0.08
76.72 0.04 0.11
171.30 0.03 0.09
33.76 0.09 0.27
319.58 0.01 0.03
27.21 0.14 0.41
44.52 0.08 0.24
19.21 0.08 0.24

according to the fulfilment/non-fulfilment of the discharge range by QC.



Table 6
Absolute error of estimated discharge and b value at each station.

Station Absolute error of discharge (m3/s) b value

LK 68.74 0.03
CT 45.45 0.13
ZK 33.47 0.17
LCQ 28.48 0.07
BDK 20.70 0.22
LJB 9.54 0.39
WLT 7.17 0.28
ZGNL 2.51 0.93
BDSH 0.45 1.33
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two scenarios, i.e. the fulfilment or non-fulfilment of the Qc require-
ment, were subsequently analyzed. For the global–AMHG method, six
rivers satisfied the condition that Qc was within the range of discharge,
while three rivers did not satisfy this condition. For the VHR-AMHG
method, all nine rivers did not satisfy the requirement. When the
Fig. 11. Comparison of GA- and Bayesian-AMHG. (a) Comparison of GA- and Bayesian-AMHG ca
Bayesian-AMHG parameters.
global–AMHG method proposed by Gleason et al. (2014) was used to
calculate Qmin and Qmax to define the discharge interval applicable to
all stations, three out of the nine rivers of the study area did not satisfy
the Qc requirement. When the same calculations were performed using
the VHR method, all nine rivers did not meet the requirement, which
implies that the proposedmethod of the present study ismore stringent
compared to the global parameters.

Further analysis of the calculation errors for rivers under different
conditions in the study area is shown in Fig. 10.

Fig. 10 shows that for the rivers having Qc values that satisfy the re-
quirement, the error of estimation using the global parameters was
130.77 m3/s, while the error was 390.45m3/s for rivers that did not sat-
isfy the requirement. This indicates that under the same parameter con-
ditions, the AMHG has a higher accuracy for rivers that meet the
requirement. However, parameter setting, or selection of VHR or global
parameters, remains as the factor having the greatest influence on cal-
culation accuracy. Although the parameters calculated using the VHR
did not satisfy the requirement that “Qc must be within the discharge
lculated dischargewithManning equation calculated discharge. (b) Sensitivity analysis on
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range,” its error was much smaller than that of the global parameters
method, which partly satisfied the Qc requirement. This means that
the VHRmethod proposed in the present study has eliminated the lim-
itation of “Qc must be within the range of observed discharge” when
using the AMHG, thereby expanding the scope of application of AMHG.

5.4. GA-AMHG vis-à-vis Bayesian-AMHG

Hagemann et al. (2017) used the Bayesian method instead of GA to
provide optimized parameters for AMHG, and they concluded that the
GAwill give a more similar result to known flow than Bayesianmethod
when passing priori knowledge, with low errormetrics. To compare the
performance of GA-AMHG with that of Bayesian-AMHG, WLT station
was used to test the difference of the twomethods, as shown in Fig. 11a.

While the discharges calculated with GA-AMHG using priori knowl-
edge (red point in Fig. 11a, RMSE = 8.38 m3/s) and with the Bayesian-
AMHG using priori knowledge (yellow point, RMSE = 19.57 m3/s)
show very few differences with manning equation calculated discharge
(blue point), those byGA-AMHGusing global parameters (orange point,
RMSE= 310.23 m3/s) and by Bayesian-AMHG using global parameters
(gray point, RMSE = 488.14 m3/s) show quite large biases compared
with manning equation results. For areas with abundant priori knowl-
edge GA-AMHG using priori knowledge is recommended. Furthermore,
Bayesian-AMHG increases RMSE from 72.86 m3/s to 488.14 m3/s when
using global parameters, and increases RMSE from 8.38 m3/s to
19.57m3/swhen using priori knowledge. Consequently, GA-AMHGper-
forms better than Bayesian-AMHG both when using priori knowledge
and global parameters, which is consistent with Hagemann et al.
(2017). In other words, AMHG based on either GA or Bayesian cannot
perform well without priori knowledge. Our study, developed a new
VHR method to provide priori knowledge for AMHG, undoubtedly en-
larges the application extent of AMHG, especially for data-scarce areas.
Besides, Bayesianmethods require certain constraints in their unknown
parameters which are imposed as ‘prior’ probability distributions
(Hagemann et al., 2017; Zhang et al., 2009). Researchers often use his-
torical information as Bayesian’ prior: Hagemann et al. (2017) used
priori knowledge (or known flows) for Bayesian to provide parameters
for discharge calculation; Reis Jr and Stedinger (2005) used Bayesian
methods, taking known flood records as priori knowledge, to evaluate
the posterior distributions flood frequency; Parent and Bernier (2003)
pointed out that only when a sample of historical data are available
can Bayesian method be used to deal with the classical Poisson–Pareto
peak over threshold (POT) model for discharge estimation.

To further discuss the indispensability of priori knowledge for an ac-
curate calculation with AMHG, sensitivity analysis on Bayesian-AMHG
parameters following Section 4.1 was conducted in Fig. 11b, showing
that the orange line (upperboundary_Q) and the sky-blue line
(lowerboundary_Q) vary the greatest. Combined with the conclusion
in Section 4.1, the threshold of discharge always counts for AMHG, sug-
gesting that precise priori knowledge is highly demanded in an accurate
AMHG calculation. The above-discussed implies that the VHR method
proposed in our study, although with a few error, is applicable to pro-
vide initial parameters for GA-AMHG, however, it is not appropriate
for Bayesian-AMHGbecause Bayesianmethod hasmuchhigher require-
ment on priori knowledge (Parent and Bernier, 2003; Reis Jr and
Stedinger, 2005). This certifies the feasibility and reasonability of com-
bining VHR with GA-AMHG in our study.

5.5. Potential application of VHR-AMHG

The VHR-AMHG was developed based on UAVs imagery. However,
there are some limitations with UAVs remote sensing technology. For
instance, limitation on battery capacity will make UAVs can only collect
data at a relatively short timewhichmakes the obtainedmeasurements
instantaneous (Watts et al., 2012; Toth and Jóźków, 2016). Besides, UAV
color camera system usually cannot work in the night or under weak
illuminated condition (Woo et al., 2007; Wei et al., 2016). These greatly
limit the application of traditional methods based on UAVs for
streamflow retrieval, especially in remote (data-scarce) areas where
the intra- and inter-annual variability of discharges is extreme large.
In order to overcome these shortcomings of UAVs, the VHR-AMHG is
designed to be able to calculate long series synthetic width and dis-
charge of river by once flight, thus produces long-series synthetic
width and discharge by once UAV flight whereby width-discharge
curve can be fitted. After constructing long-series width-discharge
curve, high-resolution satellite images, which can be obtained easily
throughout a year, can be used as a data source to monitor the intra-
and inter-annual variability of river width whereby to retrieve dis-
charge if the studied river cross-section keeps stable. For example, the
GeoEye-1 (with the spatial resolution of 0.41 m per pixel) (Choi et al.,
2012; Ielpi, 2017), WorldView-4 (with the spatial resolution of 0.31 m
per pixel) (Sozzi et al., 2018) and GF-2 (with the spatial resolution of
1 m per pixel) (Chu et al., 2016) could provide reliable river width
values. Based on the width-discharge curve constructed with help of
UAVs and river width values measured by using real-time satellite im-
ages, discharges in the daytime could be acquired. In the night time,
the synthetic aperture radar satellite image can provide river width in-
formation to monitor discharge variation, such as TerraSAR-X (with the
spatial resolution of 1 m per pixel) (Pitz and Miller, 2010; Shen et al.,
2019), Alos-2 (with the spatial resolution of 1 m per pixel) (Kankaku
et al., 2013), GF-3 (with the spatial resolution of 1 m per pixel) (Chen
et al., 2017).

6. Conclusion

The present study evaluated the accuracy of the inversion of
medium-to-small streamflow by investigating two different scenarios
(with or without a priori knowledge) through the use of the AMHG
method in combination with UAV remote sensing in data-scarce
medium-to-small rivers in Jinan City. A VHR method was proposed to
provide the initial values of the AMHGparameters for rivers with scarce
data. The results of the study are as follows:

(1) For the reference station WLT, under the scenario where a priori
knowledge was available, the NSE and RMSE were 0.88 and
8.38m3/s, respectively, and themethod yieldedhigh accuracy re-
sults thusmaking it applicable to the estimation of streamflow in
WLT section.Under the scenario inwhich a priori knowledgewas
unavailable and the global parameterswere used to calculate dis-
charge, theNSE is−161.54, an RMSE is 310.23m3/s, respectively,
and the method yielded low accuracy results making it unsuit-
able for calculating discharge on the section. Subsequently, dis-
charge estimation using the global parameter-AMHG method
was performed on other medium-to-small rivers in Jinan City
that lacked a priori knowledge (discharge information). The
resulting RMSE and average absolute error were 332.64 m3/s
and 234.37 m3/s, respectively, proving that the global
parameter-AMHG method is not suitable for discharge calcula-
tion of medium-to-small rivers with scarce data.

(2) When the proposed VHR-AMHG method was used to calculate
discharge in data-scarce medium-to-small rivers in the study
area, an RMSE of 32.15 m3/s and an average absolute error of
24.06 m3/s were obtained, which were superior to those of the
global parameter-AMHG method and indicated a significant en-
hancement of calculation accuracy. Therefore, the proposed
VHR-AMHG method expanded the application range of AMHG
to rivers of all sizes.

(3) Regardless of the size of the river, the low threshold value of b is
among the key factors that constrains the application of dis-
charge estimation using the AMHG (Gleason et al., 2014; Barber
et al., 2018). For large rivers, a low-b river is defined as b b 0.1
(Gleason et al., 2014), while for medium-to-small rivers, it is



17C.S. Zhao et al. / Science of the Total Environment 693 (2019) 133571
defined as b b 0.25. The AMHGmethod is not recommended for
low-b rivers.

(4) For rivers that satisfy the requirement that “congruent discharge
(Qc) must be within the range of discharge,” the accuracy of the
AMHG in discharge estimation is higher compared to that of riv-
ers that do not satisfy the requirement. However, the accuracy of
the initial values ofmodel parameters has a greater impact on the
accuracy of the AMHG calculations. In addition, results have
shown that the novel VHR-AMHGmethod proposed in the pres-
ent study effectively eliminates the limitation of the Qc require-
ment.

(5) GA-AMHG performs better than Bayesian-AMHG both when
using priori knowledge and global parameters. More impor-
tantly, AMHG based on either GA or Bayesian cannot perform
well without priori knowledge. Our study developed a new
VHR method to provide priori knowledge for AMHG, undoubt-
edly enlarges the application extent of AMHG, especially for
data-scarce areas.

Overall, it is feasible to use the AMHG method to calculate the dis-
charge of global medium-to-small rivers with proper initial value set-
ting of the parameters. The VHR method proposed in the present
study provides an alternative parameter-setting method for areas with
scarce historical data, and improves the accuracy of the AMHG for dis-
charge calculation in these areas.

Because of the impact of roughness and other indices (ratio and hy-
draulic radius), the estimated values calculated using the Manning
Equation were lower than measured values, thus introducing a certain
degree of uncertainty to the results of the present study. For future stud-
ies, the Manning Equation must be modified to improve the estimation
accuracy. Additionally, the irregularity of cross-sections often resulted
in great uncertainties especially in the estimation of small discharges,
e.g., estimation of 1.14 m3/s discharge with a relative error of 219% at
ZGNL station. Future improved VHR with full consideration of uncer-
tainties caused by irregular cross-section is expected. On these bases, a
combination of the modified Manning Equation and VHR method will
generate more realistic initial values for the AMHG parameters, which
will result in enhanced calculation efficiency and accuracy for the
AMHGmethod.
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